MINISTÉRIO DA INFRAESTRUTURA

DEPARTAMENTO NACIONAL DE INFRA ESTRUTURA DE TRANSPORTES SUPERINTENDÊNCIA REGIONAL DO DNIT NO ESTADO DO RIO GRANDE DO SUL

RODOVIA: BR-471/RS

TRECHO: ENTR RS-403 (RIO PARDO) - ENTR BR-290 (PANTANO GRANDE)

SUB TRECHO: DISTRITO INDUSTRIAL DE RIO PARDO

EXTENSÃO: 2,00km

SEGMENTO: Km 179,500 ao km 181,500

PROJETO EXECUTIVO DE ENGENHARIA ACESO AO DISTRITO INDUSTRIAL DE RIO PARDO

VOLUME 1 – Relatório do Projeto Executivo

NOVEMBRO/2022

MINISTÉRIO DA INFRAESTRUTURA

DEPARTAMENTO NACIONAL DE INFRA ESTRUTURA DE TRANSPORTES SUPERINTENDÊNCIA REGIONAL DO DNIT NO ESTADO DO RIO GRANDE DO SUL

RODOVIA: BR-471/RS

TRECHO: ENTR RS-403 (RIO PARDO) - ENTR BR-290 (PANTANO GRANDE)

SUB TRECHO: DISTRITO INDUSTRIAL DE RIO PARDO

EXTENSÃO: 2,00km

SEGMENTO: Km 179,500 ao km 181,500

PROJETO EXECUTIVO DE ENGENHARIA ACESO AO DISTRITO INDUSTRIAL DE RIO PARDO

VOLUME 1 – Relatório do Projeto Executivo

NOVEMBRO/2020

Número	Data	Responsável	Conferente	Situação
00	20/08/22	Marcus	Magaly	Correção
01	01/11/22	Marcus	Magaly	Apresentação

SUMÁRIO

SUMÁRIO

1 – APRESENTAÇÃO	5
2 – MAPA DE SITUAÇÃO E LOCALIZAÇÃO	8
3 – ESTUDOS DE TRÁFEGO E CAPACIDADE	10
4 – ESTUDOS TOPOGRÁFICOS	15
5 – ESTUDOS GEOTÉCNICOS	25
6 – PROJETO GEOMÉTRICO	30
7 – PROJETO DE TERRAPLENAGEM	36
8 – PROJETO DE PAVIMENTAÇÃO	47
9 – PROJETO DE DRENAGEM E OBRAS DE ARTE CORRENTES	55
10 – PROJETO DE SINALIZAÇÃO	65
11 – PROJETO DE OBRAS COMPLEMENTARES	73
12 – ILUMINAÇÃO	79
13 - PAISAGISMO	84
14 – QUADRO DE QUANTIDADES E CUSTOS	86
15 – CRONOGRAMA FÍSICO DE EXECUÇÃO	90
16 – NOTAS DE SERVIÇO	98
17 – ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA	106
18 – TERMO DE ENCERRAMENTO	112

1 - APRESENTAÇÃO

A GALMARC Consultoria Ltda. apresenta ao Departamento Nacional de Infra Estrutura de Transportes - DNIT, através da 10ª Unidade de Infra Estrutura Terrestre – Rio Grande do Sul, o Projeto Executivo de Engenharia referente ao acesso do distrito industrial de Rio Pardo, no município de Rio Pardo, no estado do Rio Grande do Sul. Localizada na Rodovia BR-471/RS, Segmento: km 178,50 ao km 180,50 com extensão projetada de 2,00 km.

O projeto de engenharia atende diretamente as seguintes empresas:

- COPARROZ COOPERATIVA AGROINDUSTRIAL RIO PARDO
- COTRIBÁ COOPERATIVA AGRICOLA MISTA GENERAL OSORIO LTDA
- COTRIJAL COOPERATIVA AGROPECUARIA E INDUSTRIAL
- IMPORTADORA E EXPORTADORA DE CEREAIS AS
- SULMIX INDÚSTRIA DE DILUENTES LTDA

Os elementos contidos neste relatório, seguem o preconizado no Manual de Acesso de Propriedades Marginais a Rodovias Federais IPR-728, de 2006 em seu item 3.2.6.

"O projeto deverá atender as especificações de um Projeto Executivo de Engenharia, contendo:"

- a) Estudos Complementares do Acesso (executados pelo DNIT);
- b) Topografia;
- c) Projeto de desmatamento;
- d) Projeto de terraplenagem;
- e) Projeto geométrico;
- f) Projeto de via lateral;
- g) Projeto de drenagem;
- h) Projeto de obras de arte correntes;
- i) Projeto de obras de arte especiais;
- j) Projeto de pavimentação (geotecnia);

- k) Projeto de obras complementares;
- Projeto de sinalização;
- m) Projeto de iluminação;
- n) Projeto de paisagismo.

Todos os serviços necessários à implantação do Acesso devem seguir as Especificações de Serviço, de Materiais, Métodos de Ensaios e demais normas do DNIT, disponíveis no "site" do Instituto de Pesquisas Rodoviárias – IPR, endereço eletrônico http://ipr.dnit.gov.br/.

2 – MAPA DE SITUAÇÃO E LOCALIZAÇÃO

Av. Bento Gonçalves nº 1294/202 - Bairro Partenom - Porto Alegre/RS Telefone: (51) 98528 1181 - Celular: (51) 98117 8044 – e-mail: galmarc.galmarc@gmail.com

3 - ESTUDOS DE TRÁFEGO E CAPACIDADE

O Município de Rio Pardo estabeleceu junto a BR-471, entre o km 178,50 e o km 180,50 seu distrito industrial, aonde estão instaladas cinco empresas, prioritariamente destinadas a estocagem e beneficiamento de grãos.

As empresas instaladas movimentam diariamente, em seu momento de maior operação um total de 115 veículos, representando 6% do tráfego da BR-471. A projeção do tráfego para definir a vida útil do pavimento, deve admitir um crescimento anual da frota na ordem 3,00%.

A densidade de ocupação da rodovia em 2020 é de 1.917 veículos – diversos – em ambos os sentidos da via – Fonte: Levantamento realizado pelo DNIT no ano de 2017, Modelagem de Tráfego 2017 – extrapolado para 2020 consolidado no Quadro 1.

Quadro1 - Tráfego na BR-471 PNV 471BRS0070

	FONTE : PNCT 2	020 - PNV 471	LBRS0070										
CONTAG	EM VOLUMÉTRI	CA CLASSIFICA	ATÓRIA	Ônibus e Caminhão de 2 eixos	Ônibus e Caminhão de 3 eixos	Caminhão de 4 eixos	Caminhão de 5 eixos	Caminhão de 6 eixos	Caminhão de 7 eixos	Caminhão de 8 eixos	Caminhão de 9 eixos	Veículo de Passeio	Moto
	471	RS											
FAIXA	471	RS											
CRESCENTE	471	RS	471BRS0070	259,51	155,20	91,15	53,29	124,88	83,54	15,90	17,98	1083,06	32,33
	471	RS											
FAIXA	471	RS											
DECRESCENTE	471	RS	471BRS0070	231,92	138,70	81,46	47,63	111,60	74,66	14,21	16,07	1076,34	32,13
	471	RS	MÉDIA	245,71	146,95	86,31	50,46	118,24	79,10	15,06	17,03	1079,70	32,23
	471	RS	DESVIO	13,79	8,25	4,85	2,83	6,64	4,44	0,85	0,96	3,36	0,10
		MEDIA + DP		259,51	155,20	91,15	53,29	124,88	83,54	15,90	17,98	1083,06	32,33
١	PARTICIPAÇÃO DO TRÁFEGO EM % VEÍCULOS LEVES CAMINHÕES E ÔNIBUS 26,39%											5	8,19%
REBOQI	UES E SEMI REB	OQUES							15,42%				

Aplicando a proporção de 6% do tráfego da rodovia para definição dos fluxos na Rua Lateral necessária se tem o Quadro 2.

Quadro2 – 6% do tráfego da BR-471 PNV 471BRS0070

	FONTE: PNCT 2	020 - PNV 471	BRS0070	PAF	RTICIPAÇÃO :	6,0%							
CONTAG	EM VOLUMÉTRI	CA CLASSIFICA	ITÓRIA	Ônibus e Caminhão de 2 eixos	Ônibus e Caminhão de 3 eixos	Caminhão de 4 eixos	Caminhão de 5 eixos	Caminhão de 6 eixos	Caminhão de 7 eixos	Caminhão de 8 eixos	Caminhão de 9 eixos	Veículo de Passeio	Moto
	116	RS											
FAIXA	116	RS											
CRESCENTE	116	RS	116BRS3170	15,57	9,31	5,47	3,20	7,49	5,01	0,95	1,08	64,98	1,94
	116	RS											
FAIXA	116	RS											
DECRESCENTE	116	RS	116BRS3170	13,92	8,32	4,89	2,86	6,70	4,48	0,85	0,96	64,58	1,93
	116	RS	MÉDIA	14,74	8,82	5,18	3,03	7,09	4,75	0,90	1,02	64,78	1,93
	116	RS	DESVIO	0,83	0,49	0,29	0,17	0,40	0,27	0,05	0,06	0,20	0,01
		MEDIA + DP		15,57	9,31	5,47	3,20	7,49	5,01	0,95	1,08	64,98	1,94
PARTICIP.	AÇÃO DO TRÁFE	GO EM %											
1	VEÍCULOS LEVES	5										58,19%	
CAP	VINHÕES E ÔNIE	BUS			26,39%								
REBOQ	UES E SEMI REB	OQUES							15,42%				

- FATORES DE VEÍCULOS

Para definir a aplicação do eixo padrão por tipo de veículo que usa a rodovia, adotou-se a pesquisa Enecon-Engerout, feita para o DAER/RS, resumida no Quadro 3.

Quadro3 - Fator de aplicação do eixo padrão por veículos

TIPOS DE VEÍCULO	FATORES DE
Ônibus	0,345
Carga leve	0,063
Carga médio	1,371
Carga pesado	4,986
Carga ultra pesado	11,205

A tacha de crescimento da frota, foi considerada pela média de crescimento da frota do estado do Rio Grande do Sul nos últimos 10 anos, da ordem de 3,62%.

O número N calculado para a BR-471, considerando o 10º ano após a abertura ao tráfego (2031), é de 1,45 x 10^7, demonstrado no Quadro 4.

O número N calculado para a Rua Lateral da BR-471, considerando o 10º ano após a abertura ao tráfego (2031), é de 8,70 x 10^5, demonstrado no Quadro 5.

Quadro 4 - Número N BR-471

Quadro 5 - Número N BR-471

ANO	VEÍCULOS VP/dia	FATOR	EQUIVALENTE DE EIXO DIA	VEÍCULOS O/dia	FATOR	EQUIVALENTE DE EIXO DIA	VEÍCULOS CM/dia	FATOR	EQUIVALENTE DE EIXO DIA	VEÍCULOS SR/dia	FATOR	EQUIVALENTE DE EIXO DIA	VEÍCULOS SSR/dia	FATOR	EQUIVALENTE DE EIXO DIA	EIXO ANO	NUMERO
2020	1115,39	0,062	69	259,51	0,345	90	246,35	1,371	338	178,17	4,986	888	117,43	11,205	1316	985.695,47	9,86E+0
2021	1156	0,062	72	269	0,345	93	255,3	1,371	350	185	4,986	921	122	11,205	1363	2.007.073,12	2,01E+0
2022	1198	0,062	74	279	0,345	96	264,5	1,371	363	191	4,986	954	126	11,205	1413	3.065.424,64	3,07E+0
2023	1241	0,062	77	289	0,345	100	274,1	1,371	376	198	4,986	988	131	11,205	1464	4.162.088,48	4,16E+0
2024	1286	0,062	80	299	0,345	103	284,0	1,371	389	205	4,986	1024	135	11,205	1517	5.298.451,56	5,30E+0
2025	1332	0,062	83	310	0,345	107	294,3	1,371	403	213	4,986	1061	140	11,205	1572	6.475.950,97	6,48E+0
2026	1381	0,062	86	321	0,345	111	304,9	1,371	418	221	4,986	1100	145	11,205	1629	7.696.075,87	7,70E+0
2027	1431	0,062	89	333	0,345	115	316,0	1,371	433	229	4,986	1139	151	11,205	1688	8.960.369,29	8,96E+0
2028	1482	0,062	92	345	0,345	119	327,4	1,371	449	237	4,986	1181	156	11,205	1749	10.270.430,13	1,03E+0
2029	1536	0,062	95	357	0,345	123	339,3	1,371	465	245	4,986	1223	162	11,205	1812	11.627.915,17	1,16E+0
2030	1592	0,062	99	370	0,345	128	351,6	1,371	482	254	4,986	1268	168	11,205	1878	13.034.541,17	1,30E+0
2031	1649	0,062	102	384	0,345	132	364,3	1,371	499	263	4,986	1314	174	11,205	1946	14.492.087,03	1,45E+0
	1649 IMENTO ANUAL		102	384	0,345	132	364,3	1,371	499	263	4,986	1314	174	11,205	1946	14.492.087,03	1,45E+0
			EQUIVALENTE DE EIXO DIA		0,345	EQUIVALENTE DE EIXO DIA	VEÍCULOS CM/dia	1,371	EQUIVALENTE DE EIXO DIA	VEÍCULOS SR/dia	4,986 FATOR	EQUIVALENTE DE EIXO DIA			EQUIVALENT	E EIXO	1,45E+0
AXA DE CRESC	IMENTO ANUAL	_=3,62%	EQUIVALENTE	VEÍCULOS	·	EQUIVALENTE	VEÍCULOS		EQUIVALENTE	VEÍCULOS		EQUIVALENTE	VEÍCULOS		EQUIVALENT DE EIXO DIA	E EIXO	NUME
AXA DE CRESC	IMENTO ANUAL VEÍCULOS VP/dia	_=3,62% FATOR	EQUIVALENTE DE EIXO DIA	VEÍCULOS O/dia	FATOR	EQUIVALENTE DE EIXO DIA	VEÍCULOS CM/dia	FATOR	EQUIVALENTE DE EIXO DIA	VEÍCULOS SR/dia	FATOR	EQUIVALENTE DE EIXO DIA	VEÍCULOS SSR/dia	FATOR	EQUIVALENT DE EIXO DIA	E EIXO	NUME "N" 5,91E+
AXA DE CRESC ANO 2020	VEÍCULOS VP/dia	FATOR 0,062	EQUIVALENTE DE EIXO DIA	VEÍCULOS O/dia 15,57	FATOR 0,345	EQUIVALENTE DE EIXO DIA	VEÍCULOS CM/dia	FATOR 1,371	EQUIVALENTE DE EIXO DIA 20	VEÍCULOS SR/dia	FATOR 4,986	EQUIVALENTE DE EIXO DIA	VEÍCULOS SSR/dia	FATOR 11,205	EQUIVALENT DE EIXO DIA 79 82	E EIXO ANO 59.141,73	NUME "N" 5,91E+
ANO 2020 2021	VEÍCULOS VP/dia 66,92	=3,62% FATOR 0,062 0,062	EQUIVALENTE DE EIXO DIA 4	VEÍCULOS O/dia 15,57	FATOR 0,345 0,345	EQUIVALENTE DE EIXO DIA 5	VEÍCULOS CM/dia 14,78	FATOR 1,371 1,371	EQUIVALENTE DE EIXO DIA 20 21	VEÍCULOS SR/dia 10,69	FATOR 4,986 4,986	EQUIVALENTE DE EIXO DIA 53	VEÍCULOS SSR/dia 7,05	FATOR 11,205	EQUIVALENT DE EIXO DIA 79 82 85	E EIXO ANO 59.141,73 120.424,39	NUME
ANO 2020 2021 2022	VEÍCULOS VP/dia 66,92 69	=3,62% FATOR 0,062 0,062 0,062	EQUIVALENTE DE EIXO DIA 4 4	VEÍCULOS O/dia 15,57 16	FATOR 0,345 0,345 0,345	EQUIVALENTE DE EIXO DIA 5 6	VEÍCULOS CM/dia 14,78 15,3	1,371 1,371 1,371	EQUIVALENTE DE EIXO DIA 20 21 22	VEÍCULOS SR/dia 10,69 11	FATOR 4,986 4,986 4,986	EQUIVALENTE DE EIXO DIA 53 55 57	VEÍCULOS SSR/dia 7,05	11,205	EQUIVALENT DE EIXO DIA 79 82 85 88	E EIXO ANO 59.141,73 120.424,39 183.925,48	NUMEI "N" 5,91E+ 1,20E+ 1,84E+
ANO 2020 2021 2022 2023	VEÍCULOS VP/dia 66,92 69 72 74	=3,62% FATOR 0,062 0,062 0,062 0,062	EQUIVALENTE DE EIXO DIA 4 4 5	VEÍCULOS O/dia 15,57 16 17	0,345 0,345 0,345 0,345	EQUIVALENTE DE EIXO DIA 5 6 6	VEÍCULOS CM/dia 14,78 15,3 15,9 16,4	1,371 1,371 1,371 1,371	EQUIVALENTE DE EIXO DIA 20 21 22 23	VEÍCULOS SR/dia 10,69 11 11	4,986 4,986 4,986 4,986	EQUIVALENTE DE EIXO DIA 53 55 57	VEÍCULOS SSR/dia 7,05 7 8 8 8	11,205 11,205 11,205	FQUIVALENT DE EIXO DIA 79 82 85 88 91	E EIXO ANO 59.141,73 120.424,39 183.925,48 249.725,31	NUME "N" 5,91E+ 1,20E+ 1,84E+ 2,50E+
ANO 2020 2021 2022 2023 2024	VEÍCULOS VP/dia 66,92 69 72 74	=3,62% FATOR 0,062 0,062 0,062 0,062 0,062	EQUIVALENTE DE EIXO DIA 4 4 5 5	VEÍCULOS O/dia 15,57 16 17 17	0,345 0,345 0,345 0,345 0,345	EQUIVALENTE DE EIXO DIA 5 6 6 6	VEÍCULOS CM/dia 14,78 15,3 15,9 16,4	1,371 1,371 1,371 1,371 1,371	EQUIVALENTE DE EIXO DIA 20 21 22 23 23	VEÍCULOS SR/dia 10,69 11 11 12	4,986 4,986 4,986 4,986 4,986	EQUIVALENTE DE EIXO DIA 53 55 57 59 61	VEÍCULOS SSR/dia 7,05 7 8 8 8 8	11,205 11,205 11,205 11,205	EQUIVALENT DE EIXO DIA 79 82 85 88 91 94	E EIXO ANO 59.141,73 120.424,39 183.925,48 249.725,31 317.907,09	NUME "N" 5,91E+ 1,20E+ 1,84E+ 2,50E+ 3,18E+ 3,89E+
ANO 2020 2021 2022 2023 2024 2025	WEÍCULOS VP/dia 66,92 69 72 74 77 80	=3,62% FATOR 0,062 0,062 0,062 0,062 0,062 0,062	EQUIVALENTE DE EIXO DIA 4 4 5 5 5	VEÍCULOS O/dia 15,57 16 17 17 18	0,345 0,345 0,345 0,345 0,345	EQUIVALENTE DE EIXO DIA 5 6 6 6 6	VEÍCULOS CM/dia 14,78 15,3 15,9 16,4 17,0	1,371 1,371 1,371 1,371 1,371 1,371	EQUIVALENTE DE EIXO DIA 20 21 22 23 23 24	VEÍCULOS SR/dia 10,69 11 11 12 12	4,986 4,986 4,986 4,986 4,986 4,986	EQUIVALENTE DE EIXO DIA 53 55 57 59 61 64	VEÍCULOS SSR/día 7,05 7 8 8 8 8	11,205 11,205 11,205 11,205 11,205	EQUIVALENT DE EIXO DIA 79 82 85 88 91 94	E EIXO ANO 59.141,73 120.424,39 183.925,48 249.725,31 317.907,09 388.557,06	NUME "N" 5,91E+ 1,20E+ 1,84E+ 2,50E+ 3,18E+
ANO 2020 2021 2022 2023 2024 2025 2026	VEÍCULOS	=3,62% FATOR 0,062 0,062 0,062 0,062 0,062 0,062 0,062	EQUIVALENTE DE EIXO DIA 4 4 5 5 5	VEÍCULOS O/dia 15,57 16 17 17 18 19	0,345 0,345 0,345 0,345 0,345 0,345	EQUIVALENTE DE EIXO DIA 5 6 6 6 6 7	VEÍCULOS CM/dia 14,78 15,3 15,9 16,4 17,0 17,7	1,371 1,371 1,371 1,371 1,371 1,371 1,371	EQUIVALENTE DE EIXO DIA 20 21 22 23 23 24 25	VEÍCULOS SR/dia 10,69 11 11 12 12 13	4,986 4,986 4,986 4,986 4,986 4,986 4,986	EQUIVALENTE DE EIXO DIA 53 55 57 59 61 64 66	VEÍCULOS SSR/dia 7,05 7 8 8 8 8 9	11,205 11,205 11,205 11,205 11,205 11,205	EQUIVALENT DE EIXO DIA 79 82 85 88 91 94 98	E EIXO ANO 59.141,73 120.424,39 183.925,48 249.725,31 317.907,09 388.557,06 461.764,55	NUME "N" 5,91E+ 1,20E+ 1,84E+ 2,50E+ 3,18E+ 4,62E+ 5,38E+
ANO 2020 2021 2022 2023 2024 2025 2026 2027	VEÍCULOS	=3,62% FATOR 0,062 0,062 0,062 0,062 0,062 0,062 0,062 0,062	EQUIVALENTE DE EIXO DIA 4 4 5 5 5 5	VEÍCULOS O/dia 15,57 16 17 17 18 19 19	0,345 0,345 0,345 0,345 0,345 0,345 0,345	EQUIVALENTE DE EIXO DIA 5 6 6 6 6 7 7	VEÍCULOS CM/dia 14,78 15,3 15,9 16,4 17,0 17,7 18,3	1,371 1,371 1,371 1,371 1,371 1,371 1,371 1,371	EQUIVALENTE DE EIXO DIA 20 21 22 23 23 24 25 26	VEÍCULOS SR/dia 10,69 11 11 12 13 13	4,986 4,986 4,986 4,986 4,986 4,986 4,986	EQUIVALENTE DE EIXO DIA 53 55 57 59 61 64 66 68	VEÍCULOS SSR/día 7,05 7 8 8 8 8 9 9	11,205 11,205 11,205 11,205 11,205 11,205 11,205	EQUIVALENT DE EIXO DIA 79 82 85 88 91 94 98 101 105	E EIXO ANO 59.141,73 120.424,39 183.925,48 249.725,31 317.907,09 388.557,06 461.764,55 537.622,16	NUME "N" 5,91E+ 1,20E+ 1,84E+ 2,50E+ 3,18E+ 3,89E+ 4,62E+
ANO 2020 2021 2022 2023 2024 2025 2026 2027 2028	VEÍCULOS	=3,62% FATOR 0,062 0,062 0,062 0,062 0,062 0,062 0,062 0,062 0,062	EQUIVALENTE DE EIXO DIA 4 4 5 5 5 6	VEÍCULOS O/dia 15,57 16 17 17 18 19 19 20	0,345 0,345 0,345 0,345 0,345 0,345 0,345	EQUIVALENTE DE EIXO DIA 5 6 6 6 7 7	VEÍCULOS CM/dia 14,78 15,3 15,9 16,4 17,0 17,7 18,3 19,0	1,371 1,371 1,371 1,371 1,371 1,371 1,371 1,371	EQUIVALENTE DE EIXO DIA 20 21 22 23 23 24 25 26 27	VEÍCULOS SR/dia 10,69 11 11 12 12 13 13 14	4,986 4,986 4,986 4,986 4,986 4,986 4,986 4,986	EQUIVALENTE DE EIXO DIA 53 55 57 59 61 64 66 68 71	VEÍCULOS SSR/dia 7,05 7 8 8 8 8 9 9 9 9	11,205 11,205 11,205 11,205 11,205 11,205 11,205	EQUIVALENT DE EIXO DIA 79 82 85 88 91 94 98 101 105	E EIXO ANO 59.141,73 120.424,39 183.925,48 249.725,31 317.907,09 388.557,06 461.764,55 537.622,16 616.225,81	NUME "N" 5,91E+ 1,20E+ 1,84E+ 2,50E+ 3,18E+ 4,62E+ 5,38E+ 6,16E+

Av. Bento Gonçalves nº 1294/202 - Bairro Partenom - Porto Alegre/RS Telefone: (51) 98528 1181 - Celular: (51) 98117 8044 – e-mail: galmarc.galmarc@gmail.com

A demanda de aplicação do eixo padrão de 8,2t para a Rua Lateral é considerado pequeno, admitindo uma capa de rolamento em tratamento superficial com espessura de 2.50cm – conforme a Tabela 32 do Manual de Pavimentação do DNIT.

Para a BR-471/RS a demanda de aplicação do eixo padrão de 8,2t exige um revestimento da ordem de 10cm de espessura – conforme a Tabela 32 do Manual de Pavimentação do DNIT.

4 - ESTUDOS TOPOGRÁFICOS

4 - ESTUDOS TOPOGRÁFICOS

O propósito deste estudo é elencar os procedimentos e metodologias que foram adotadas para estabelecer e reconstituir o eixo da rodovia, sendo a base do projeto.

Para o projeto, o presente estudo balizou-se nas instruções de serviço e normas técnicas já consagradas para locação de obras lineares, sendo elas: NBR-13.133 Execução de Levantamento Topográfico, NBR-14.166 - Rede de Referência Cadastral Municipal e DNIT IS-205 Estudos Topográficos para Projetos Executivos de Engenharia.

4.1 – Inspeção de Campo

Na vistoria de campo, constatou-se a impossibilidade de reconstituição confiável do eixo da rodovia. O marco indicado do PNV que deveria estar na interseção com a BR-290, não foi encontrado, dificultando a real locação e reconstituição do eixo. Desta forma adotou-se os marcos quilométricos para orientar o levantamento topográfico.

4.2 – Descrição dos Serviços

Para permitir, ao menos, a amarração da topografia ao eixo existente foi fixado como referência, o marco quilométrico existente no km 179 aonde se fez a igualdade com o km 0+320 do eixo de projeto, o início da locação topográfica se deu no km 0+000. Os levantamentos das estacas foram feitos no limite da pista, a cada 20m, para facilitar o levantamento das seções do terreno, pós processadas para o eixo da rodovia em escritório.

Foi utilizada uma estação total TOPCON GTS 229 com precisão Linear com um prisma de 3mm +5ppm (cinco partes por milhão), alcance de 1000m com um prisma e precisão angular de 5" dois prismas em bastão, com diâmetro de 5cm.

Não foi necessário executar poligonal fechada na locação, o trecho em projeto permite a intervisão das estações de coleta de pontos.

Foi executada marcação a cada vinte metros no eixo da rodovia, as seções foram levantadas apenas dentro da faixa de domínio.

As coordenadas de partida e a altimetria foram obtidas por sinal de GPS modelo Promark 2 (LA) com a fixação de dois pontos por 60 minutos com precisão horizontal de

5 mm e vertical de 10 mm, afixadas com ponto de referência no 3º Batalhão de Engenharia de Combate, marco localizado na Rua Marques Ribeiro s/nº. em Cachoeira do Sul.

Para reconstituição do projeto foram implantados três marcos de coordenadas com monografia a seguir.

MARCO BASE D5T-M-1196		
Código do Vértice: D5T-M-1196	Propriedade: GALMARC	Município/UF: RIO PARDO- RS
Responsável Técnico: Paulo Sérgio Oliveira da Silveira	eira	Código do Credenciado: D5T
Sistema Geodésico de Referência: SIRGAS2000		Data das Observações: 20/12/2021
COORDENADAS GEOGRAFICAS	COORDENADAS PLANAS UTM	PRECISÕES
Latitude (Φ) =- 30° 02' 05,0729"S	N = 6676573,952m	$\delta(\Phi) = 0,002 \text{ m}$
Longitude (A) =- 52° 22′ 13,2191"W	E = 367873,739 m	$\delta(\lambda) = 0,004 \text{ m}$
Altitude Elipsoidal (h) = 41,880 m	MC = 51°WGr	δ(h) = 0,008 m
Localização:	Fotografia do Vértice	Detailhe do Marco
O Marco D5T-M-1196 está localizado junto ao muro da empresa Sulmix, distante 473,67 metros do marco P2 e azimute de 15º21'07".		
Descrição:		1000年
Marco com estrutura metálica tipo tubular, sendo o centro situado junto a superfície do solo com uma chapa de metal no topo.		DST
Referência utilizada:		
(PPP) POSICIONAMENTO POR PONTO PRECISO-IBGE		PROJECTION OF THE PROJECTION O
Equipamento Utilizado:		
Marca: Topcon		The second of th
Modelo: GR3 RTK		
Número de Série: 850-10200		

MARCO BASE D5T-M-1197		
Código do Vértice: D5T-M-1197	Propriedade: GALMARC	Município/UF: RIO PARDO- RS
Responsável Técnico: Paulo Sérgio Oliveira da Silv	Silveira	Código do Credenciado: D5T
Sistema Geodésico de Referência: SIRGAS2000		Data das Observações: 20/12/2021
COORDENADAS GEOGRAFICAS	COORDENADAS PLANAS UTM	PRECISÕES
Latitude (Φ) =- 30° 01' 30,2892"S	N = 6677641,416m	$\delta(\Phi) = 0,003 \mathrm{m}$
Longitude (λ) =- 52° 22′ 23,6172″W	E = 367582,374 m	δ(λ) = 0,007 m
Altitude Elipsoidal (h) = 39,910 m	MC = 51°WGr	$\delta(h) = 0,009 \text{ m}$
Localização:	Fotografia do Vértice	Detalhe do Marco
O Marco D5T-M-1197 está localizado junto a cerca de acesso a empresa Líder do Sul, distante 632,85 metros do marco P2 e azimute de 344º47'47".	or house	
Descrição:		
Marco com estrutura metálica tipo tubular, sendo o centro situado junto a superfície do solo com uma chapa de metal no topo.		
Referência utilizada:		
(PPP) POSICIONAMENTO POR PONTO PRECISO-IBGE		M
Equipamento Utilizado:		PORME
Marca: Topcon		Y
Modelo: GR3 RTK		
Número de Série: 850-10200		

MARCO BASE D51-M-1198		
Código do Vértice: D5T-M-1198	Propriedade: GALMARC	Município/UF: RIO PARDO- RS
Responsável Técnico: Paulo Sérgio Oliveira da Silveira	eira	Código do Credenciado: D5T
Sistema Geodésico de Referência: SIRGAS2000		Data das Observações: 21/12/2021
COORDENADAS GEOGRAFICAS	COORDENADAS PLANAS UTM	PRECISÕES
Latitude (Φ) =- 29° 58' 19,3332"S	N = 6683522,100m	$\delta(\Phi) = 0.010 \text{m}$
Longitude (λ) =- 52° 22' 16,7430"W	E = 367796,163 m	$\delta(\lambda) = 0,010 \text{ m}$
Altitude Elipsoidal (h) = 59,690 m	MC = 51°WGr	δ(h) = 0,018 m
Localização:	Fotografia do Vértice	Detailhe do Marco
O Marco D5T-M-1198 está localizado junto a um poste no acesso a Emal Calcários, distante 65,01 metros do marco D5T-M-1199 e azimute de 326º38'50". Descrição: Marco com estrutura metálica tipo tubular, sendo o centro situado junto a superfície do solo com uma chapa de metal no topo. Referência utilizada: (PPP) POSICIONAMENTO POR PONTO PRECISO-IBGE Equipamento Utilizado: Marca: Topcon Modelo: GR3 RTK Número de Série: 850-10200		

4.3 - Características Locais

A topografia local tem característica de coxilha, com pouca altura e taludes suaves, a rodovia BR-471 apresenta greides leves, a inclinação da plataforma da pista de rolamento é de 2% em média, as larguras das pistas e dos acostamentos são respectivamente 3,60m e 2,50m.

Ocorre uma curva horizontal no trecho, junto ao entroncamento com a via denominada Passo do Adão, com centro na estaca 0+300 do eixo projetado, o raio circular é de 750m, sem interferir com a visibilidade. O greide existente do Passo do Adão chegando a BR-471/RS é de 8% em média.

As margens da rodovia apresentam vegetação rasteira em toda a extensão do projeto, com exceção aos primeiros 300m, aonde se observa a presença arbustiva nos dois lados da rodovia.

Todos os bueiros encontrados foram cadastrados, inclusive com a tomada das cotas de fundo e diâmetro encontrado.

Junto ao km 0+340 estão instaladas duas paradas de ônibus, uma a cada lado da rodovia.

21

Coordenadas de locação dos eixos de projeto

Av. Bento Gonçalves nº 1294/202 - Bairro Partenom - Porto Alegre/RS Telefone: (51) 98528 1181 - Celular: (51) 98117 8044 – e-mail: galmarc.galmarc@gmail.com

RAMO A									
nº Tipo	Comprimento	Raio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	0.000m		S17° 22' 59"W	0+000.00m	0+000.00m		(367571.4126m,6678011.6559m,0.0000m)	(367571.4126m,6678011.6558m,0.0000m)	
2 Curve	75.103m	349.999m		0+000.00m	0+075.10m	74.959m	(367571.4126m,6678011.6558m,0.0000m)	(367541.4864m,6677942.9296m,0.0000m)	(367560.1505m,6677975.6811m)
3 Line	0.000m		S29° 40' 39"W	0+075.10m	0+075.10m		(367541.4864m,6677942.9296m,0.0000m)	(367541.4863m,6677942.9295m,0.0000m)	
4 Curve	112.358m	150.000m		0+075.10m	0+187.46m	109.750m	(367541.4863m,6677942.9295m,0.0000m)	(367525.7972m,6677834.3069m,0.0000m)	(367512.2930m,6677891.7018m)
5 Line	0.000m			0+187.46m	0+187.46m		(367525.7972m,6677834.3069m,0.0000m)	(367525.7972m,6677834.3069m,0.0000m)	
6 Curve	75.103m	350.000m		0+187.46m	0+262.56m	74.959m	(367525.7972m,6677834.3069m,0.0000m)	(367535.0529m,6677759.9213m,0.0000m)	(367534.4309m,6677797.6125m)
7 Line	0.000m		S0° 56' 44"E	0+262.56m	0+262.56m		(367535.0529m,6677759.9213m,0.0000m)	(367535.0529m,6677759.9211m,0.0000m)	
RAMO B									
nº Tipo	Comprimento	Raio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	0.000m		N0° 50' 28"W	0+000.00m	0+000.00m		(367542.0295m,6677761.4790m,0.0000m)	(367542.0295m,6677761.4794m,0.0000m)	
2 Curve	85.497m	200.000m		0+000.00m	0+085.50m	84.848m	(367542.0295m,6677761.4794m,0.0000m)	(367558.8082m,6677844.6515m,0.0000m)	(367541.3922m,6677804.8864m)
3 Line	0.000m			0+085.50m	0+085.50m		(367558.8082m,6677844.6515m,0.0000m)	(367558.8082m,6677844.6515m,0.0000m)	
4 Curve	80.809m	150.000m		0+085.50m	0+166.31m	79.835m	(367558.8082m,6677844.6515m,0.0000m)	(367570.2209m,6677923.6666m,0.0000m)	(367575.4215m,6677882.5837m)
5 Line	0.000m			0+166.31m	0+166.31m		(367570.2209m,6677923.6666m,0.0000m)	(367570.2209m,6677923.6666m,0.0000m)	
6 Curve	85.497m	200.000m		0+166.31m	0+251.80m	84.848m	(367570.2209m,6677923.6666m,0.0000m)	(367577.6631m,6678008.1873m,0.0000m)	(367564.7691m,6677966.7346m)
7 Line	0.001m		N17° 16' 43"E	0+251.80m	0+251.80m		(367577.6631m,6678008.1873m,0.0000m)	(367577.6634m,6678008.1881m,0.0000m)	
RAMO C									
nº Tipo	Comprimento	Raio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	26.264m		N78° 52' 02"E	0+000.00m	0+026.26m		(367450.5164m,6677879.5725m,0.0000m)	(367476.2859m,6677884.6436m,0.0000m)	
2 Curve	14.370m	119.000m		0+026.26m	0+040.63m	14.362m	(367476.2859m,6677884.6436m,0.0000m)	(367490.5188m,6677886.5613m,0.0000m)	(367483.3444m,6677886.0327m)
3 Line	14.665m		N85° 47' 10"E	0+040.63m	0+055.30m		(367490.5188m,6677886.5613m,0.0000m)	(367505.1438m,6677887.6388m,0.0000m)	
4 Curve	23.056m	18.000m		0+055.30m	0+078.35m	21.512m	(367505.1438m,6677887.6388m,0.0000m)	(367521.4014m,6677901.7256m,0.0000m)	(367518.5214m,6677888.6245m)
5 Line	0.000m		N12° 23' 53"E	0+078.35m	0+078.35m		(367521.4014m,6677901.7256m,0.0000m)	(367521.4014m,6677901.7260m,0.0000m)	
6 Curve	40.244m	153.997m		0+078.35m	0+118.60m	40.129m	(367521.4014m,6677901.7260m,0.0000m)	(367535.0505m,6677939.4630m,0.0000m)	(367525.7464m,6677921.4913m)
7 Line	0.000m		N27° 22' 16"E	0+118.60m	0+118.60m		(367535.0505m,6677939.4630m,0.0000m)	(367535.0507m,6677939.4633m,0.0000m)	
RAMO D									
nº Tipo	Comprimento	Raio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	26.264m		N78° 52' 02"E	0+000.00m	0+026.26m		(367452.0611m,6677871.7230m,0.0000m)	(367477.8306m,6677876.7942m,0.0000m)	
2 Curve	13.404m	111.000m		0+026.26m	0+039.67m	13.396m	(367477.8306m,6677876.7942m,0.0000m)	(367491.1067m,6677878.5829m,0.0000m)	(367484.4146m,6677878.0898m)
3 Line	7.564m		N85° 47' 10"E	0+039.67m	0+047.23m		(367491.1067m,6677878.5829m,0.0000m)	(367498.6499m,6677879.1387m,0.0000m)	
4 Curve	28.816m	18.000m		0+047.23m	0+076.05m	25.836m	(367498.6499m,6677879.1387m,0.0000m)	(367517.9555m,6677861.9695m,0.0000m)	(367517.1494m,6677880.5017m)
5 Line	0.000m			0+076.05m	0+076.05m		(367517.9555m,6677861.9695m,0.0000m)	(367517.9555m,6677861.9695m,0.0000m)	
6 Curve	28.893m	154.000m		0+076.05m	0+104.94m	28.850m	(367517.9555m,6677861.9695m,0.0000m)	(367521.9035m,6677833.3908m,0.0000m)	(367518.5851m,6677847.4944m)
7 Line	0.000m		S13° 14' 24"E	0+104.94m	0+104.94m		(367521.9035m,6677833.3908m,0.0000m)	(367521.9036m,6677833.3907m,0.0000m)	
8 Curve	26.177m	345.997m		0+104.94m	0+131.12m	26.171m	(367521.9036m,6677833.3907m,0.0000m)	(367526.9298m,6677807.7068m,0.0000m)	(367524.9027m,6677820.6438m)

(367526.9298m,6677807.7068m,0.0000m) (367526.9298m,6677807.7066m,0.0000m)

9 Line

0.000m

S8° 54' 19"E 0+131.12m 0+131.12m

RAMO E									
nº Tipo	Comprimento	Raio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	11.289m	naio	N74° 47' 15"W	0+000.00m	0+011.29m	Corda	(367597.9479m,6677860.8677m,0.0000m)	(367587.0545m,6677863.8299m,0.0000m)	coordenadas do 11
2 Curve	25.976m	18.000m	1474 47 15 W	0+011.29m	0+037.26m	23 780m	(367587.0545m,6677863.8299m,0.0000m)	(367573.9483m,6677883.6721m,0.0000m)	(367571.7726m,6677867.9855m)
3 Line	0.000m	10.000111		0+037.26m	0+037.26m	23.700111	(367573.9483m,6677883.6721m,0.0000m)	(367573.9483m,6677883.6721m,0.0000m)	(507571.772011,0077007.5055111)
4 Curve	40.615m	154.000m		0+037.26m	0+077.88m	40 498m	(367573.9483m,6677883.6721m,0.0000m)	(367574.1893m,6677924.1689m,0.0000m)	(367576.7545m,6677903.9045m)
5 Line	0.000m	154.000111	N7° 12' 53"W	0+077.88m	0+077.88m	40.450111	(367574.1893m,6677924.1689m,0.0000m)	(367574.1892m,6677924.1691m,0.0000m)	(307370.734311),0077303.3043111)
6 Curve	14.554m	195.996m	117 12 33 W	0+077.88m	0+092.43m	14 550m	(367574.1892m,6677924.1691m,0.0000m)	(367572.8990m,6677938.6619m,0.0000m)	(367573.2750m,6677931.3915m)
7 Line	0.000m	155.550111	N2° 57' 36"W	0+092.43m	0+092.43m	14.55011	(367572.8990m,6677938.6619m,0.0000m)	(367572.8990m,6677938.6621m,0.0000m)	(507575.275011),0077551.551511)
, Ellic	0.000111		142 37 30 W	0.032.43111	0.032.43111		(307372.0330111,0077330.0013111,0.0000111)	(307372:0330111,0077330:0021111,0:0000111)	
RAMO F									
nº Tipo	Comprimento	Raio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	0.000m		N3° 51' 59"E	0+000.00m	0+000.00m		(367564.5053m,6677804.9720m,0.0000m)	(367564.5053m,6677804.9722m,0.0000m)	
2 Curve	11.416m	39.499m		0+000.00m	0+011.42m	11.376m	(367564.5053m,6677804.9722m,0.0000m)	(367563.6300m,6677816.3143m,0.0000m)	(367564.8929m,6677810.7069m)
3 Line	0.000m		N12° 41' 33"W	0+011.42m	0+011.42m		(367563.6300m,6677816.3143m,0.0000m)	(367563.6299m,6677816.3147m,0.0000m)	
4 Curve	26.125m	60.499m		0+011.42m	0+037.54m	25.923m	(367563.6299m,6677816.3147m,0.0000m)	(367563.4844m,6677842.2371m,0.0000m)	(367560.7143m,6677829.2600m)
5 Line	0.000m		N12° 02' 58"E	0+037.54m	0+037.54m		(367563.4844m,6677842.2371m,0.0000m)	(367563.4845m,6677842.2375m,0.0000m)	
6 Curve	30.081m	18.500m		0+037.54m	0+067.62m	26.875m	(367563.4845m,6677842.2375m,0.0000m)	(367586.4311m,6677856.2271m,0.0000m)	(367567.5658m,6677861.3571m)
7 Line	9.896m		S74° 47' 15"E	0+067.62m	0+077.52m		(367586.4311m,6677856.2271m,0.0000m)	(367595.9799m,6677853.6305m,0.0000m)	
EIXO BR-471									
nº Tipo	Comprimento	Raio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	35.099m		S23° 20' 47"W	0+000.00m	0+035.10m		(367634.8848m,6678161.8517m,0.0000m)	(367620.9754m,6678129.6264m,0.0000m)	
2. Spiral-Curve-Spiral	90.000m			0+035.10m	0+125.10m		(367620.9754m,6678129.6264m,0.0000m)	(367586.8796m,6678046.3487m,0.0000m)	
2. Spiral-Curve-Spiral	448.068m	795.000m		0+125.10m	0+573.17m	442.161m	(367586.8796m,6678046.3487m,0.0000m)	(367556.3666m,6677605.2421m,0.0000m)	(367507.7711m,6677830.2123m)
2. Spiral-Curve-Spiral	90.000m			0+573.17m	0+663.17m		(367556.3666m,6677605.2421m,0.0000m)	(367578.6713m,6677518.0630m,0.0000m)	
3 Line	1095.705m		S15° 25' 56"E	0+663.17m	1+758.87m		(367578.6713m,6677518.0630m,0.0000m)	(367870.2370m,6676461.8628m,0.0000m)	
4. Spiral-Curve-Spiral	0.000m								
4. Spiral-Curve-Spiral	172.703m	2480.000m		1+758.87m	1+931.57m	172.668m	(367870.2370m,6676461.8628m,0.0000m)	(367910.3616m,6676293.9220m,0.0000m)	(367893.2242m,6676378.5913m)
4. Spiral-Curve-Spiral	0.000m								
5 Line	37.869m		S11° 26' 32"E	1+931.57m	1+969.44m		(367910.3616m,6676293.9220m,0.0000m)	(367917.8740m,6676256.8060m,0.0000m)	

5 Line

0.000m

N1° 40' 20"W 0+120.60m 0+120.61m

EIXO RLE									
nº Tipo	Comprimento Ra	laio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	0.962m		N14° 17' 04"W	1+000.00m	1+000.96m		(367856.4860m,6676531.8522m,0.0000m)	(367856.2486m,6676532.7847m,0.0000m)	
2 Curve	37.514m 59	9.000m		1+000.96m	1+038.48m	36.886m	(367856.2486m,6676532.7847m,0.0000m)	(367858.7773m,6676569.5834m,0.0000m)	(367851.4581m,6676551.6001m)
3 Line	0.000m			1+038.48m	1+038.48m		(367858.7773m,6676569.5834m,0.0000m)	(367858.7773m,6676569.5834m,0.0000m)	
4 Curve	40.432m 42	2.000m		1+038.48m	1+078.91m	38.889m	(367858.7773m,6676569.5834m,0.0000m)	(367855.0959m,6676608.2975m,0.0000m)	(367867.0468m,6676589.9019m)
5 Line	0.000m			1+078.91m	1+078.91m		(367855.0959m,6676608.2975m,0.0000m)	(367855.0959m,6676608.2975m,0.0000m)	
6 Curve	15.340m 50	0.000m		1+078.91m	1+094.25m	15.280m	(367855.0959m,6676608.2975m,0.0000m)	(367848.8272m,6676622.2320m,0.0000m)	(367850.8843m,6676614.7801m)
7 Line	999.189m		N15° 25' 56"W	1+094.25m	2+093.44m		(367848.8272m,6676622.2320m,0.0000m)	(367582.9441m,6677585.3965m,0.0000m)	
8 Curve	221.981m 65	53.230m		2+093.44m	2+315.42m	220.915m	(367582.9441m,6677585.3965m,0.0000m)	(367561.0141m,6677805.2200m,0.0000m)	(367553.1221m,6677693.4270m)
9 Line	0.000m		N4° 02' 17"E	2+315.42m	2+315.42m		(367561.0141m,6677805.2200m,0.0000m)	(367561.0141m,6677805.2202m,0.0000m)	
RAMO H									
nº Tipo	Comprimento Ra	laio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	0.002m		S14° 38' 56"E	0+000.00m	0+000.00m		(367879.2655m,6676456.0930m,0.0000m)	(367879.2659m,6676456.0914m,0.0000m)	
2 Curve	45.572m 17	793.000m		0+000.00m	0+045.57m	45.571m	(367879.2659m,6676456.0914m,0.0000m)	(367868.3024m,6676500.3242m,0.0000m)	(367873.5031m,6676478.1381m)
3 Line	0.000m		N13° 11' 34"W	0+045.57m	0+045.57m		(367868.3024m,6676500.3242m,0.0000m)	(367868.3024m,6676500.3242m,0.0000m)	
4 Curve	34.433m 18	806.995m		0+045.57m	0+080.01m	34.433m	(367868.3024m,6676500.3242m,0.0000m)	(367860.1250m,6676533.7716m,0.0000m)	(367864.3730m,6676517.0869m)
5 Line	0.001m		S14° 17' 04"E	0+080.01m	0+080.01m		(367860.1250m,6676533.7716m,0.0000m)	(367860.1253m,6676533.7704m,0.0000m)	
6 Curve	16.275m 55	5.000m		0+080.01m	0+096.28m	16.215m	(367860.1253m,6676533.7704m,0.0000m)	(367858.4845m,6676549.9027m,0.0000m)	(367858.1027m,6676541.7143m)
7 Line	0.002m		N2° 40' 11"E	0+096.28m	0+096.29m		(367858.4845m,6676549.9027m,0.0000m)	(367858.4846m,6676549.9050m,0.0000m)	
8 Curve	18.351m 13	3.995m		0+096.29m	0+114.64m	17.064m	(367858.4846m,6676549.9050m,0.0000m)	(367869.5065m,6676562.9322m,0.0000m)	(367858.9860m,6676560.6570m)
9 Line	0.002m		N77° 47' 49"E	0+114.64m	0+114.64m		(367869.5065m,6676562.9322m,0.0000m)	(367869.5082m,6676562.9326m,0.0000m)	
10 Curve	15.553m 54	4.999m		0+114.64m	0+130.19m	15.501m	(367869.5082m,6676562.9326m,0.0000m)	(367884.9695m,6676564.0414m,0.0000m)	(367877.1599m,6676564.5874m)
11 Line	0.000m		S86° 00' 02"E	0+130.19m	0+130.19m		(367884.9695m,6676564.0414m,0.0000m)	(367884.9696m,6676564.0414m,0.0000m)	
RAMO G									
nº Tipo	Comprimento Ra	laio	Direção	Início	Final	Corda	Coordenadas do Ponto de início	Coordenadas do Ponto Final	Coordenadas do PI
1 Line	85.000m		S15° 25' 56"E	0+000.00m	0+085.00m		(367815.1705m,6676671.6762m,0.0000m)	(367837.7889m,6676589.7408m,0.0000m)	
2 Curve	8.787m 40	0.000m		0+085.00m	0+093.79m	8.770m	(367837.7889m,6676589.7408m,0.0000m)	(367841.0352m,6676581.5941m,0.0000m)	(367838.9628m,6676585.4884m)
3 Line	0.000m		S28° 01' 09"E	0+093.79m	0+093.79m		(367841.0352m,6676581.5941m,0.0000m)	(367841.0352m,6676581.5940m,0.0000m)	
4 Curve	26.817m 10	0.000m		0+093.79m	0+120.60m	19.474m	(367841.0352m,6676581.5940m,0.0000m)	(367859.8588m,6676586.5835m,0.0000m)	(367861.1056m,6676543.8777m)

(367859.8588m,6676586.5835m,0.0000m) (367859.8588m,6676586.5836m,0.0000m)

5 – ESTUDOS GEOTÉCNICOS

5 - ESTUDOS GEOTÉCNICOS

Para melhor orientar as soluções de pavimento, foi necessário estabelecer as devidas capacidades dos solos locais, bem como as características físicas e resistivas dos cortes e aterros, individualmente estudados.

Para tanto fez-se uma campanha de sondagens ao longo da BR-471 inclusive em uma jazida próxima distante 8,6 km em estrada de chão.

5.1 – Sondagens

Para as obras de pavimentação, é necessário estabelecer a capacidade resistiva das camadas de solo, em aterros por pelo menos 1,0m de espessura e em cortes com pelo mesmo 2,0m de espessura abaixo do greide de terraplenagem.

O segmento encontra-se em condição mista, com corte e aterros, a extensão para implantação da Rua Lateral é de 1.400m. Para uma boa caracterização dos solos no subleito foram indicadas sondagens, para caracterização dos materiais.

Os dados coletados resultaram na tabela que segue.

			_	
TIPO DE SOLO	Classificação Visual	AREIA ARGILOSA MARROM 10 - 48 ARGILA SILTOSA VARIEGADA 48 - 150 BRITA 34 C/P O DE PEDRA 0,00 - 0,20 ARGILA ARENOSA WARROM 15 - 90 AREIA ARGILOSA MARROM 15 - 90 AREIA ARGILOSA MARROM 16 - 50 ARGILA ARENOSA MARROM 16 - 20 ARGILA ARENOSA MARROM 10 - 20 ARGILA ARENOSA WARROM 20 - 40 SAUBRO ARGILOSO C/PEDREGULHO ARGILA ARENOSA WERMELHA 30 - 40 SAUBICA CIMENTO "ARENITO" JANELA SOLO CIMENTO "ARENITO" JANELA		
F	Classificação AASHO	AREIA SILTOSA AREIA SILTOSA (PED. AREIA SILTOSA (PED. AREIA SILTOSA (PED. SILTE AREIA SILTOSA (PED. AREIA SILTOSA (PED. AREIA SILTOSA (PED. AREIA SILTOSA (PED. AREIA AREIAOSO (PED. AREIA AREIA AREIA AREIA AREIA AREIA SILTE AREIA SILTOSA (PED. SILTE AREIA SILTOSA (PED. SILTE AREIA SILTOSA (PED. AREIA SILTO	DADOS DO PROJETO	uda
	SC			ultoria L ial S
<u>8</u>	Exp	0.17 0.17 0.17 0.00 0.00 0.00 0.00 0.00		Constrindustri RDO/R
≌	Dens	1789 1511 1797 1797 1797 1813 1813 1778 1643 1643 1643 1643 1643		: Galmarc Consultoria Ltda : Distrito Industrial : BR 471 : RIO PARDO/RS
	_	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		BRA ::
ACT.	护	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6		TE :TO/OE +O
COMPACT	Dmáx	1736 1677 1734 1734 1653 1653 1656 1647 1782 1647		CLENTE : Galmarc Consulte PROJETO/OBRA : Distrito Industrial TRECHO : BR 471 LOCAL : RIO PARDO/RS
CLASSIFIC.	HRB	0 A2.4 A6.4 A6.4 A7.4 A7.4 A7.4 A7.4 A7.4 A7.4 A7.4 A7		
\vdash	2		\downarrow	
ENSAIOS	- L	194 34 35 38 38 38 38 38 38 38 38 38 38 38 38 38	$\frac{1}{2}$	
EA	щ		+	
٣	8	22 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	
	99	4 4 8 8 8 8 9 5 7 7 7 7 7 7 8 8 9 8 9 8 9 7 7 7 7 7 7 7	1	
SCA	9	64 64 64 64 64 64 64 64 64 64 64 64 64 6	\vdash	
ANÁLISE GRANULOMÉTRICA % que passa na peneira	20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	
ULO	9	78	1	
RAN	4	88738588888	1	
SE G	3/8	8 8 9 00 00 00 00 00 00 00 00 00 00 00 00 0	1	
NÁL	3/4	000 000	1	
	Ļ.	9 9 9 9 9 9 9 9 9 9 9 9 9	1	
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
REGISTRO		01/2022 02/2022 03/2022 04/2022 06/2022 06/2022 08/2022 11/2022 13/2022 15/2022 15/2022		
IDAGEM	Prof.			
NOS PC	Pos.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
LOCAL DA SONDAGEM	Estaca	0+001 0+002 0+003 0+004 0+004 0+005 0+006 0+006 0+006 0+006 0+007 0+015		

	П			
TIPO DE SOLO	Classificação Visual	ARGILA ARENOSA MARROM CLARO ARGILA ARENOSA MARROM CLARO ARGILA ARENOSA MARROM CLARO		
F	Classificação AASHO	12 PED. AREN. ARGILOSO 13 PED. AREN. ARGILOSO 13 PED. AREN. ARGILOSO	DADOS DO PROJETO	S
	ISC	2 2 2 2		LTORI IDO/R
l	Exp	0,000	1	ONSU IO PAF
SC	Dens	1702	1	ARC O
	ے	11,21		SOLICTANTE : GALMARC CONSULTORIA LOCAL : BR 290 - RIO PARDO/RS
H	Hot	10,3	1	NTE :
COMPACT. AASHO	\rightarrow	1538	1	CAL
-	Dmáx		L	80
CLASSIFIC.	HB HB	A2-6 A2-7-7		
3	₫	000		
ENSAIOS FÍSICOS	_	12.7		
FISI	비비	37.1		
<u>a</u>	_			
1	200	o = 0		
_	8	r	L	
1 2	8	<u>α Γ</u> α		
MÉT	8	ω ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο		
I DE	9	ο φ α		
ANÁLISE GRANULOMÉTRICA % que passa na peneira	4	o o o o o o o o o o o o o o o o o o o		
SIS P B B	3/8	36 9 9]	
NAL	3/4"	28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	
`	÷.	8 8 8	1	
	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	
REGISTRO		01/2022 02/2022 03/2022		
LOCAL DA SONDAGEM	Prof.			
DASG	Pos.		-	
LOCAL	Estaca	0+001		

5.2 - Ensaios

As sondagens foram ensaiadas e seus resultados e memórias são apresentados no Volume 3.

6 – PROJETO GEOMÉTRICO

6 - PROJETO GEOMÉTRICO

O dispositivo indicado para o projeto, em decorrência da existência de várias empresas se exige a aplicação de Ruas Laterais, com entrada e saída bem definida.

As características da Rodovia BR-471 são as seguintes:

Classe: 1

Região: Ondulada

Velocidade Diretriz: 100km/h

Velocidade Regulamentada: 60km/h

Greide: -2 a 2%

Faixa de Domínio: 35m para cada lado

Veículo de Projeto: RE – Reboque articulado

Distância de visibilidade: <250m

6.1 - Faixas adicionais

A largura das faixas adicionais para mudança de velocidade serão de 3,50m. Os acostamentos serão mantidos em 2,50m quando fora das interseções. Para o afastamento dentro das interseções adotou-se 0,50m de largura.

Os comprimentos obedecem a tabela 48 do manual de projetos de interseções:

Velocidade		Comprimento da faixa de desaceleração, inclusive taper (m)									
diretriz	Taper (m)	Velocidade de segurança da curva de saída (km/h)									
(km/h)		0	20	30	40	50	60	70	80		
40	40	60	50	40	-	=	(50)	(75)	-		
50	45	75	70	60	45	-	-	-	- 1		
60	55	95	90	80	65	55	(= 0)	(s =)	-		
70	60	110	105	95	85	70	60	322	-		
80	70	130	125	115	100	90	80	70	2		
90	80	145	140	135	120	110	100	90	80		
100	85	170	165	155	145	135	120	100	85		
110	90	180	180	170	160	150	140	120	105		
120	100	200	195	185	175	170	155	140	120		

Obs: O comprimento mínimo da faixa de desaceleração será sempre o do taper

Velocidade	ages a	Comprimento da <i>faixa de aceleração</i> , inclusive taper (m) Velocidade de segurança da curva de entrada (km/h)									
diretriz	Taper (m)										
(km/h)	(111)	0	20	30	40	50	60	70	80		
40	40	60	50	40	2	020	2		100		
50	45	90	70	60	45	-	5	-	-		
60	55	130	110	100	70	55	5	153	45		
70	60	180	150	140	120	90	60	(=0			
80	70	230	210	200	180	140	100	70	(*)		
90	80	280	250	240	220	190	140	100	80		
100	85	340	310	290	280	240	200	170	110		
110	90	390	360	350	320	290	250	200	160		
120	100	430	400	390	360	330	290	240	200		

Obs: O comprimento mínimo da faixa de aceleração será sempre o do taper.

A velocidade na imediação do distrito industrial foi reduzida para 60km/h, como os greides locais são da ordem de 2% se manterá os comprimentos da tabela 48 sem correções.

Para a desaceleração de chegada a interseção, nos ramos F e C foram adotados os comprimentos de 90m, partindo de 60km/h e chegando a 20km/h na entrada para os acessos, os tapers serão de 55m deduzidos do comprimento das faixas.

Para a aceleração dos ramos D e E foi adotada a extensão de 110m com taper de 55m deduzidos do comprimento das faixas.

As faixas de mudança de velocidade serão 170,0m para faixa de desaceleração e 250,0m para aceleração.

Como a velocidade de chega à interseção sul do complexo, pode ser desobedecida, adotou-se um comprimento condizente com a velocidade de 100km/h, chegando a parada total, esta extensão é de 170m com taper de 85m deduzido do comprimento total da faixa.

6.2 – Raios de Giro Dentro das Interseções

A velocidade de projeto dentro da interseção é de 20km/h adotada para todas as converções, a tabela 41 do Manual de Projetos de Interseções, Publicação IPR-718, orienta os raios mínimos desejados.

Tabela 41 - Raios mínimos para curvas em interseções

Velocidade de projeto (km/h)	25	30	40	50	60	70
Coeficiente de atrito transversal – f	0,32	0,28	0,23	0,19	0,17	0,15
Superelevação (%)	0	2	4	6	8	9
Raio mínimo calculado (m)	15	24	47	79	113	161
Raio mínimo arredondado (m)	15	25	50	80	115	160

Obs:

- Os raios acima são adotados de preferência no bordo interno da pista.
- ii) Para velocidades superiores a 70 km/h devem ser usados os valores correspondentes às vias em geral.
- iii) Para fluxo contínuo os raios de curva deverão ser maiores que 30 m.

Para as curvas dos ramos C, D, E e F, adotou-se o raio estabelecido na tabela 39 do Manual de Projetos de Interseções, Publicação IPR-718 – tomo I. Ângulos de conversão de 90º exigem no mínimo, para veículos de projeto RE um raio simples de 18m. O raio de giro da Rótula é de 15,50m.

Para a curva do Ramo G adotou-se a curva composta de três centros, com raios 40-10-40.

Os Ramos A e B adotaram o raio mínimo de 150m, superiores aos raios de 115m calculados.

As plantas e detalhamentos da geometria para a execução da obra encontramse no Volume 2.

6.3 – Análise de segurança viária

A rodovia BR-471, entre os municípios Rio Pardo e Pantano Grande, está muito longe de ser duplicada os volumes estimados no SNV não justificam a sua duplicação, muito embora os volumes reais, e a caracterização do tráfego local tenha se alterado nos últimos 5 anos. O segmento do acesso, entre o km 178 e o km 181, está dentro da principal rota de transporte para o porto de Rio Grande de produtos advindos de Santa Cruz do Sul e região, exigindo atenção quanto a sua segurança, tanto para usuários de longa distância como para usuários locais.

A solução geométrica proposta neste projeto tem por objetivo, acrescentar segurança para os usuários da BR-471, mantendo a funcionalidade do acesso, com orientação de fluxos por meio da sinalização e segregação dos usuários em deslocamentos.

6.3.1 - Concepção

Buscou-se com a adequação do acesso, incluindo uma Rua Lateral ao acesso já existente, diminuindo os conflitos que ocorrem no acesso principal, localizado no entroncamento com a estrada municipal denominada Passo do Adão.

6.3.2 - Visibilidade

A velocidade diretriz da rodovia é de 100km/h, no cruzamento com a estrada Passo do Adão temos greides de chegada muito fortes, curva horizontal de raio pequena e grande desenvolvimento, neste ponto da via ocorrem fluxos expressivos no verão e nos períodos de safra, os conflitos e a insegurança são rotineiras. O projeto apresentado tenta conciliar os fluxos e direcionar os usuários a pontos mais favoráveis de manobra.

Com a velocidade de 60km/h a distância de visibilidade para um veículo cruzar uma faixa de tráfego é de 125m quando um veículo tipo RE gira à esquerda.

Tabela 37 – Distâncias de visibilidade ao longo da rodovia principal em interseções controladas pela sinalização "Parada brigatória" – Caso e – giros à esquerda a partir da rodovia principal

Veículo de	Distâncias de visibilidade necessárias para os veículos que giram à esquerda da rodovia principal (m) Velocidade diretriz da rodovia principal (km/h)										
projeto											
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	30	40	50	60	70	80	90	100	110	120
VP	30	45	60	75	90	105	120	140	155	170	185
CO/O	35	55	70	90	110	125	145	165	180	200	215
SR/RE	40	65	85	105	125	145	165	190	210	230	250

Obs: Valores para rodovia principal com duas faixas e dois sentidos, sem canteiro central

6.3.3 – Medidas adicionais de segurança

A saída direta dos acessos para a rodovia traz riscos aos usuários da rodovia e locais, sendo necessário propor um estoque, caracterizado em uma rua lateral, com extensão capaz de armazenar veículos derivados das empresas e possibilitando o cruzamento da via em estágios distintos, ocasionando espera de veículos para que cruzem um sentido e esperem para tornar a cruzar agora o outro sentido ou convergir em fluxo.

7 – PROJETO DE TERRAPLENAGEM

7 - PROJETO DE TERRAPLENAGEM

7.1 - Materiais

Ao longo dos 2.000m de intervenção foram encontrados dois subleitos distintos

em função da homogeneidade do solo da região, em resumo o subleito em projeto deve

atender às demandas mínimas estabelecidas para a terraplenagem com CBR maior que

4% e expansão menor que 2%.

Foram obtidos resultados que variam entre 7,0% e 15,0% para o CBR e

nenhuma expansão excede aos 2%.

O CBR de menor resultado foi encontrado a uma profundidade de 0,10 m e é

bem presente nas media amostra, o desvio médio é da ordem de 3,5% iremos considerar

para o dimensionamento da estrutura o solo com CBR mínimo de 6,84%.

Como a umidade, dentro da tolerância da especificação de terraplenagem, afeta

drasticamente o CBR dos materiais, é necessário que em projeto se aplique, com

espessura de 40cm, funcionando como camada drenante das águas infiltradas nos

canteiros.

7.2 – Orientação da Terraplenagem

Com a finalidade de orientar as origens e os destinos dos materiais produzidos

em uma obra de terra, integra ente projeto o quadro de origem e destino e o gráfico de

orientação de terraplenagem.

7.2 – Escavações

A geometria estabelecida no Projeto Geométrico orientou as seções transversais

permitindo estimar os volumes de escavação, todos em materiais de 1ª categoria, com

volume total de 2.836,69m³ para a Rua Lateral e 3.621,67m³.

37

Projeto de Acesso DISTRITO INDUSTRIAL Revisão 01 01/11/2022

7.3 – Aterros

Da mesma forma que os cortes, a conformação da nova plataforma demandou a

execução de aterros, classificados como Camada Superior (4.180,41m³) e Inferior

(5.493,32m³m³). O volume geométrico total de aterros é de 10.828,96m³, devendo ser

compactados a 100% do Proctor Intermediário quando superior e 100% do Proctor

normal quando para as camadas inferiores.

Os volumes de cortes são insuficientes para atender aos aterros, indicou-se a

jazida localizada a 8,6km do km 179, com material residual de basalto ensaiado e com

CBR na ordem de 12%.

Para o cálculo das compensações foi estabelecido a relação de 1,00 : 1,30 de

empolamento nos aterros.

7.4 – Seções Transversais

Para orientar a execução dos cortes e aterros são apresentadas neste projeto

as seções de terraplenagem gabaritadas e com as notas de serviço representadas nas

mesmas.

As seções transversais de terraplenagem encontram-se no Volume II, de onde

foram extraídas as áreas para o cálculo de volumes.

7.5 - Desmatamento

O segmento em projeto apresenta vegetação rasteira predominantemente, ainda

assim foram identificados indivíduos arbóreos que devem ser suprimidos. O

licenciamento ambiental será feito pela Prefeitura de Rio Pardo, após a aprovação do

projeto.

As seções transversais de terraplenagem encontram-se no Volume II, de onde

foram extraídas as áreas das seções a cada 20m para estimar os volumes.

38

RAMO A			Á	ŔREA			SEMID.			sc	OMAS					VOLUMES			ÁREA DE LI	MPEZA	ENLEIVA	MENTO
ESTACA	A. INF	A. SUP	ESCAL.	CORTE 1a CC	ORTE 2a CO	ORTE 3a	SEIVIID.	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	CORTE 1a CO	RTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
0+000	0,000	0,000	0,000	0,000	0,000	0,000	10,00	-	-	-	-	-	-	-	-	-	-	-	0,00	0,00	0,00	0,00
0+020	0,000	0,174	0,000	0,443	0,463	0,000	10,00	-	0,17	-	0,44	0,46	-	-	1,74	-	4,43	4,63	3,45	69,00	1,99	39,80
0+040	0,000	2,461	0,000	0,394	0,514	0,000	10,00		2,64	-	0,84	0,98	-		26,35	-	8,37	9,77	7,70	154,00	4,12	82,44
0+060	9,295	4,442	0,000	0,319	0,376	0,000	10,00	9,30	6,90	-	0,71	0,89	-	92,95	69,03		7,13	8,90	15,26	305,20	7,41	148,20
0+080	34,782	7,824	0,000	0,000	0,000	0,000	10,00	44,08	12,27	-	0,32	0,38	-	440,77	122,66	-	3,19	3,76	24,37	487,46	10,39	207,80
0+100	44,298	9,196	0,000	0,000	0,000	0,000	10,00	79,08	17,02		-	-	-	790,80	170,20	-	-	-	27,54	550,84	9,41	188,20
0+120	25,980	10,357	0,000	0,401	0,000	0,000	10,00	70,28	19,55	-	0,40	-	-	702,78	195,53	-	4,01	-	29,81	596,20	6,14	122,80
0+140	5,653	6,504	0,000	0,330	0,000	0,000	10,00	31,63	16,86	-	0,73	-	-	316,33	168,61	1-	7,31	-	18,45	369,00	0,00	0,00
0+160	2,348	5,589	0,000	0,645	0,000	0,000	10,00	8,00	12,09	-	0,98	-	-	80,01	120,93		9,75	-	19,96	399,20	3,42	68,40
0+180	1,795	5,012	0,000	0,641	0,000	0,000	10,00	4,14	10,60	-	1,29	-	-	41,43	106,01	-	12,86	-	21,52	430,40	3,37	67,40
0+200	0,000	1,991	0,000	2,967	0,000	0,000	10,00	1,80	7,00	-	3,61	-	-	17,95	70,03		36,08	-	12,03	240,60	2,35	47,00
0+220	0,000	0,004	0,000	1,669	0,674	0,000	10,00	-	2,00	-	4,64	0,67	-	-	19,95	-	46,36	6,74	6,80	136,00	1,28	25,60
0+240	0,000	0,000	0,000	1,278	0,751	0,000	10,00	-	0,00	-	2,95	1,43	-	-	0,04	-T	29,47	14,25	3,24	64,80	1,27	25,40
					SC	OMATÓRIC	RAMO A							2.483,02	1.071,08	-	168,96	48,05		3.802,70		1.023,04

RAMO B			Á	REA			SEMID.			so	MAS					VOLUM	1ES		ÁREA DE LI	MPEZA	ENLEIVA	MENTO
ESTACA	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	SEIVIID.	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
0+000	0,000	0,000	0,000	0,000	0,000	0,000	10,00	-	-	-	-	-	-	-	-			-	0,00	0,00	0,00	0,00
0+020	0,000	0,000	0,000	0,000	1,096	0,000	10,00	-	-	-	-	1,10	-	-	-			10,96	0,00	0,00	1,26	25,20
0+040	0,000	0,000	0,000	2,715	0,884	0,000	10,00	-	-	-	2,72	1,98	-	-	-		- 27,15	19,80	5,02	100,40	1,56	31,20
0+060	0,000	0,000	0,000	4,563	0,428	0,000	10,00	-	-	-	7,28	1,31	-	-	-		- 72,78	13,12	9,26	185,20	0,00	0,00
0+080	0,000	0,000	0,000	17,939	0,000	0,000	10,00	-	-	-	22,50	0,43	-				- 225,02	4,28	18,52	370,40	2,74	54,80
0+100	0,000	0,000	0,000	24,859	1,120	0,000	10,00	-	-	-	42,80	1,12	-	-	-		- 427,98	11,20	28,00	560,00	3,46	69,20
0+120	0,000	0,000	0,000	17,334	0,000	0,000	10,00	-	-	-	42,19	1,12	-	-	-		- 421,93	11,20	20,43	408,54	2,48	49,60
0+140	0,000	4,647	0,000	3,962	0,000	0,000	10,00	-	4,65	-	21,30	-	-	-	46,47		- 212,96	-	23,74	474,80	1,97	39,40
0+160	6,783	6,063	0,000	0,207	0,000	0,000	10,00	6,78	10,71	-	4,17	-	-	67,83	107,10		41,69	-	17,45	349,00	4,37	87,40
0+180	17,506	6,877	0,000	0,233	0,000	0,000	10,00	24,29	12,94	-	0,44	-	-	242,89	129,40		- 4,40	-	18,48	369,60	6,26	125,20
0+200	10,138	3,213	0,000	0,273	0,458	0,000	10,00	27,64	10,09	-	0,51	0,46	-	276,44	100,90		- 5,06	4,58	12,22	244,40	7,00	140,00
0+220	0,000	1,897	0,000	0,263	0,678	0,000	10,00	10,14	5,11	-	0,54	1,14	-	101,38	51,10		- 5,36	11,36	7,00	140,00	5,36	107,20

RAMO C			-	ÁREA			SEMID.			sc	OMAS	7				VOL	UMES			ÁREA DE LII	MPEZA	ENLEIV	AMENTO
ESTACA	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	SEIVIID.	A. INF	A. SUP	ESCAL.	CORTE 1	La CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	4	CORTE 1a	CORTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
0+000	0,000	0,000	0,000	0,000	0,000	0,000	10,00	-	-	-	-	-	-	-	-		-	-	-	0,00	0,00	0,00	0,00
0+010	0,562	3,200	0,000	0,000	0,000	0,000	10,00	0,56	3,20	-		-	-	5,62	32,00		- 1	-	-	5,94	118,70	1,74	34,76
0+020	1,937	3,557	0,000	0,000	0,000	0,000	10,00	2,50	6,76	-	-	-	-	24,99	67,57		-	-	-	6,32	126,46	2,21	44,12
0+030	3,894	3,578	0,000	0,000	0,000	0,000	10,00	5,83	7,14	-	-	-	-	58,31	71,35		-		-	6,85	137,08	2,86	57,20
0+040	5,344	3,578	0,000	0,000	0,000	0,000	10,00	9,24	7,16	-	-	-	-	92,38	71,56		-	-	-	7,15	143,00	3,21	64,20
0+050	6,694	3,578	0,000	0,000	0,000	0,000	10,00	12,04	7,16	-	-	-	-	120,38	71,56		-	-	-	2,56	51,14	3,70	74,00
0+060	8,902	4,028	0,000	0,000	0,000	0,000	10,00	15,60	7,61	-	-	-	-	155,96	76,06		-	- 1	-	8,86	177,20	4,37	87,40
0+070	10,926	5,426	0,000	0,000	0,000	0,000	10,00	19,83	9,45	-	-	-	-	198,28	94,54		-	-	-	11,52	230,40	4,76	95,20
0+080	0,000	0,000	0,000	0,000	0,000	0,000	10,00	10,93	5,43	-	-	-	-	109,26	54,26		-	-	-	0,00	0,00	0,00	0,00
							10,00	-	-	-	-	-	-	-	-		-	-	-	0,00	0,00	0,00	0,00
						SOMATÓRI	OBAMOC							765 18	238 00		_	_	_		083 08		456.88

688,54

434,97

1.444,33

86,50

3.202,34

729,20

SOMATÓRIO RAMO B

																					ı	
RAMO D				REA			SEMID.				MAS					VOLUME			ÁREA DE LII			AMENTO
	. INF A	. SUP	ESCAL.	CORTE 1a	ORTE 2a	CORTE 3a		A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	CORTE 1a		LARGURA	ÁREA	LARGURA	ÁREA
0+000							10,00	-	-	-	-		-	-	-	-	-		0,00	0,00		0,00
0+010	0,660	3,219					10,00	0,66	3,22		-	-	-	6,60	32,19		-	-	5,94	118,78	1,74	34,86
0+020 0+030	1,877 3,459	3,523 3,578					10,00 10,00	2,54 5,34	6,74 7,10		-	-	-	25,37 53,36	67,42 71,01		-	-	6,24 6,60	124,76 131,94	2,11 2,53	42,20 50,58
0+030	4,875	3,578					10,00	8,33	7,16		-	-		83,34	71,56		-		6,87	137,38	2,33	57,18
0+050	6,470	3,716					10,00	11,35	7,10			-	-	113,45	72,94				7,34	146,74	3,15	62,90
0+060	8,379	5,774					10,00	14,85	9,49		-			148,49	94,90		-	-	10,49	209,80	2,81	56,20
0+070	1,113	4,500					10,00	9,49	10,27		_	_	-	94.92	102,74		-	-	8,05	160.98	2,50	49,94
0+078							10,00	1,11	4,50		-	-	-	11,13	45,00		-	-	0,00	0,00	0,00	0,00
							12,76	-	-	-	-	-	-	-	-	-	-	-	0,00	0,00	0,00	0,00
								T											-			
					9	OMATÓRIO	RAMO D							536,66	557,76	1	-	-		1.030,38		353,86
RAMO E			ÁF	REA				1		sc	MAS					VOLUME	S		ÁREA DE LII	MPEZA	ENLEIVA	AMENTO
ESTACA A	. INF A	. SUP	ESCAL.	CORTE 1a	ORTE 2a	ORTE 3a	SEMID.	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
0+000	•						5,00	-	-	-	-	-	-	-		-		-	0,00	0,00	0,00	0,00
0+010				3,494			5,00	-	-	-	3,49	-	-	-	-	-	17,47	-	6,45	64,50	1,95	19,50
0+020				8,328			5,00	-	-	-	11,82	-	-	-	-	-	59,11	-	11,10	111,00	3,10	31,00
0+030				9,922			5,00	-	-	-	18,25	-	-	-	-	-	91,25	-	9,22	92,20	2,57	25,70
							5,00															
						OMATÓRIO	RAMO E									-	167,83	7		267,70		76,20
RAMO F			ÁF	REA							MAS					VOLUME	c		ÁREA DE LII	ADEZA	ENII EIV	AMENTO
	. INF A	. SUP		CORTE 1a C	ORTE 2a (ORTE 3a	SEMID.	A. INF	A. SUP	ESCAL.		CORTE 2a	CORTE 3a	Δ INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
0+000	0,000	0.000	0,000	0,000	0,000	0,000	5,00	A. IIV	A. 30F	LJCAL.	CONTL 1a	- CONTL Za	-	A. IIV	A. 30F	LJCAL.	- CONTL 1a		0.00	0,00	0,00	0,00
0+010	0,000	0,000	0,000	13,910	0,000	0,000	5,00	-	-	-	13.91	_	-	-	-	-	69,55	-	12,52	125,20		47,20
0+020	0,000	0.000	0,000	11,846	0,000	0.000	5,00	-	-	-	25,76	_	-	-	_	-		_	10,61	106.10	1,74	17,40
0+030	0,000	0,000	0,000	0,000	0,000	0,000	5,00	-	-	-	11,85	-	-	-	-	-	59,23	-	0,00	0,00	0,00	0,00
0+040	0,000	0,000	0,000	0,000	0,000	0,000	5,00	-	-	-	-	-	-	-	-	-	-	-	0,00	0,00	0,00	0,00
0+050	0,000	0,000	0,000	0,000	0,000	0,000	5,00	-	-	-	-	-	-	-	-	-	-	-	0,00	0,00	0,00	0,00
0+060	0,000	0,000	0,000	5,341	0,000	0,000	5,00	-	-	-	5,34	-	-	-	-	-	26,71	-	8,55	85,50	3,13	31,26
0+070	0,000	0,000	0,000	3,496	0,000	0,000	5,00	-	-	-	8,84	-	-	-	-	-	44,19	-	6,12	61,20	1,64	16,40
							5,00															
					9	OMATÓRIO	RAMO F							-	-		328,45			378,00		112,26
RAMO G			ÁF	REA						sc	MAS					VOLUME	s		ÁREA DE LII	MPEZA	ENLEIVA	AMENTO
ESTACA A	. INF A	. SUP	ESCAL.	CORTE 1a	ORTE 2a	ORTE 3a	SEMID.	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
0+090	0,000	0,000	0,000	0,000	0,000	0,000	5,00	-	-	-	-	-	-	_	-	-	-	_	0,00	0,00	0,00	0,00
0+100	0,000	0,000	0,000	1,393	0,000	0,000	5,00	-	-	Γ-	1,39	-	-	-	-		6,97		3,20	32,04	1,47	14,69
0+110	0,000	0,000	0,000	5,891	0,000	0,000	5,00	-	-	-	7,28	-	-	-	-	-	36,42	-	12,07	120,70	1,67	16,70
0+120	0,000	0,000	0,000	5,708	0,000	0,000	5,00		-		11,60	-	-	-	-	-	58,00	-	10,38	103,80	3,50	35,00

101,38

256,54

6,64

25,65

66,39

SOMATÓRIO RAMO G

RAMO H				ÁREA			CENNID			SC	OMAS					VOL	UMES			ÁREA D	E LIMPEZ	.A	ENLEIVAI	MENTO
ESTACA	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	SEMID.	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	COR	TE 1a CORTE	2a	LARGURA	ÁF	REA	LARGURA	ÁREA
0+090	0,000	0,000	0,000	0,000	0,000	0,000	5,00	-		-	-	-	-	-			-	-	-	0	,00	0,00	0,00	0,00
0+100	0,000	0,000	0,000	7,945	0,000	0,000	5,00	-	-	-	7,95	-	-		-		-	39,73	-	13	.21	132,10	1,75	17,46
0+110	0,000	0,000	0,000	6,888	0,000	0,000	5,00	-	-	-	14,83	-	-	-	-	_	-	74,17	-	15	.50	155,00	1,61	16,10
0+120	0,000	0,000	0,000	9,202	0,000	0,000	5,00	-	-	-	16,09	-	-	-	-		-	30,45	-	15	61	156,10	3,32	33,20
						SOMATÓRIO	RAMO H							-	-		- 1	94,34	-	44,	2 4	43,20	6,68	66,76

																						I	
RAMO BR				REA			SEMID.				DMAS					_	UMES			ÁREA DE LIN		ENLEIVA	
ESTACA	A. INF	A. SUP	ESCAL.	CORTE 1a C	ORTE 2a C	ORTE 3a		A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	ORTE 3a	A. INF	A. SUP	ESCAL.		CORTE 1a CO	RTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
1+360	0,000	0,000	0,000	0,000	0,000	0,000	10,00	-	-	-	-	-	-	-	-			-	-	0,00	0,00	0,00	0,00
1+380	0,000	0,000	0,000	0,000	1,271	0,000	10,00	-	-	-	-	1,27	-	-	-		-	-	12,71	0,00	0,00	1,00	20,00
1+400	0,000	0,000	0,000	0,000	1,473	0,000	10,00	-	-	-	-	2,74	-	-	-		-	-	27,44	0,00	0,00	1,00	20,00
1+420	0,000	0,000	0,000	0,000	1,391	0,000	10,00	-	-	-	-	2,86	-	-	-		-	-	28,64	0,00	0,00	1,00	20,00
1+440	0,000	0,000	0,000	0,000	1,402	0,000	10,00	_	-	-	-	2,79	-	-	-		-	-	27,93	0,00	0,00	1,00	20,00
1+460	0,000	0,000	0,000	0,000	1,583	0,000	10,00	-	-	-	-	2,99	-	-	-		-	-	29,85	0,00	0,00	1,00	20,00
1+480	0,000	0,000	0,000	1,048	1,428	0,000	10,00	-	-	-	1,05	3,01	-		-		-	10,48	30,11	2,50	50,00	1,00	20,00
1+500	0,000	0,000	0,000	1,118	1,420	0,000	10,00	-	-	-	2,17	2,85	-	-	-		-	21,66	28,48	2,50	50,00	1,00	20,00
1+520	0,000	0,000	0,000	1,079	1,491	0,000	10,00	-	-	-	2,20	2,91	-	-	-		-	21,97	29,11	2,50	50,00	1,00	20,00
1+540	0,000	0,000	0,000	1,094	1,413	0,000	10,00	-	-	-	2,17	2,90	-	-	-		-	21,73	29,04	2,50	50,00	1,00	20,00
1+560	0,000	0,000	0,000	1,030	1,190	0,000	10,00	-	-	-	2,12	2,60	-	-	-		-	21,24	26,03	2,50	50,00	1,00	20,00
1+580	0,000	0,000	0,000	1,039	1,139	0,000	10,00	-	-	-	2,07	2,33	-	-	-		-	20,69	23,29	2,50	50,00	1,00	20,00
1+600	0,000	0,000	0,000	1,101	1,343	0,000	10,00	-	-	-	2,14	2,48	-	_	_		-	21,40	24,82	2,50	50,00	1,00	20,00
1+620	0,000	0,000	0,000	1,224	1,228	0,000	10,00	-	-	-	2,33	2,57	-	-	-		-	23,25	25,71	2,50	50,00	1,00	20,00
1+640	0,000	0,000	0,000	0,953	1,131	0,000	10,00	-	-	-	2,18	2,36	-	-	-		-	21,77	23,59	2,50	50,00	1,00	20,00
1+660	0,000	0,000	0,000	1,104	1,190	0,000	10,00	-	-	-	2,06	2,32	-	-	-		-	20,57	23,21	2,50	50,00	1,00	20,00
1+680	0,000	0,000	0,000	2,462	1,304	0,000	10,00	-	-	-	3,57	2,49	-	_	-		-	35,66	24,94	5,01	100,20	1,00	20,00
1+700	0,000	0,000	0,000	2,051	1,255	0,000	10,00	-	-	-	4,51	2,56	-	-	-		-	45,13	25,59	3,79	75,80	1,00	20,00
1+720	0,000	0,000	0,000	1,789	1,348	0,000	10,00	-	-	-	3,84	2,60	-	-	-		-	38,40	26,03	3,13	62,60	1,00	20,00
1+740	0,000	0,000	0,000	1,856	1,300	0,000	10,00	-	-	-	3,65	2,65	-	-	-		-	36,45	26,48	2,50	50,00	1,00	20,00
1+760	0,000	0,000	0,000	1,443	1,466	0,000	10,00	-	-	-	3,30	2,77	-	-	-		-	32,99	27,66	2,50	50,00	1,00	20,00
1+780	0,000	0,000	0,000	1,179	0,822	0,000	10,00	-	-	-	2,62	2,29	-	-	-	7-	-	26,22	22,88	2,50	50,00	1,00	20,00
1+800	0,000	0,000	0,000	0,000	0,950	0,000	10,00	-	-	-	1,18	1,77	-	-	-		-	11,79	17,72	0,00	0,00	1,00	20,00
1+820	0,000	0,000	0,000	0,000	0,955	0,000	10,00	-	-	-		1,91	-	-	-		-	-	19,05	0,00	0,00	1,00	20,00
1+840	0,000	0,000	0,000	0,000	0,922	0,000	10,00	-	-	-	-	1,88	-	_	-		-	-	18,77	0,00	0,00	1,00	20,00
								-	-	-	-	0,92	-	-	-		-	-	-				
					S	OMATÓRIO	RAMO BR							-	-		-	431,40	599,08		888,60		480,00

DISTRITO INDUSTRIAL

RAMO RLE			Á	REA				1		so	MAS					VOLUME	s		ÁREA DE LI	MPEZA	ENLEIVA	AMENTO
	. INF	A. SUP		CORTE 1a	CORTE 2a	ORTE 3a	SEMID.	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
1+040	0,000		0,000		0,000	0,000	10,00	-	-	-	- 1	-	-		-	-	-	1 -	0,00	0,00		0,00
1+060	0,000	0,000	0,000	2,976	0,000	0,000	10,00	-	-	-	2,98	-	-	-	-	-	29,76	-	8,78	175,60	2,79	55,80
1+080	0,000	0,000	0,000	3,645	0,000	0,000	10,00	-	-	-	6,62	-	-	-	-	-	66,21	-	13,48	269,60	3,38	67,60
1+100	0,000	0,000	0,000	10,142	0,000	0,000	10,00	-	-	-	13,79	-	-	-	-	-	137,87	-	19,11	382,20	3,23	64,60
1+120	0,000	0,000	0,000	4,518	0,000	0,000	10,00	-	-	-	14,66	-	-	-	-	-	146,60		10,96	219,20	2,96	59,20
1+140	0,000	0,000	0,000	3,755	0,000	0,000	10,00	-	-	-	8,27	-	-	-	-	-	82,73		10,83	216,60	2,84	56,80
1+160	0,000	0,000	0,000	1,090	0,000	0,000	10,00	-	-	-	4,85	-	-	-	-	-	48,45	-	10,32	206,40	2,42	48,40
1+180	0,000	0,000	0,000	4,407	0,000	0,000	10,00	-	-	-	5,50	-	-	-	-	-	54,97	-	10,94	218,80	2,94	58,80
1+200	0,000	0,724	0,000	0,650	0,000	0,000	10,00	-	0,72	-	5,06	-	-	-	7,24	- I-	50,57	-	10,66	213,20	1,84	36,80
1+220	0,000	0,308	0,000	0,134	0,000	0,000	10,00	-	1,03	-	0,78	-	-	-	10,32	-	7,84	-	7,70	154,00	2,33	46,60
1+240	0,000	0,000	0,000	3,133	0,000	0,000	10,00	-	0,31	-	3,27	-	-	-	3,08	-	32,67	-	10,70	214,00	2,71	54,20
1+260	0,000	0,000	0,000	7,911	0,000	0,000	10,00	- 7	-	-	11,04	-	-	-	-			-	11,51	230,20	3,51	70,20
1+280	0,000	1,357	0,000	0,097	0,000	0,000	10,00	-	1,36	-	8,01	-	-	-	13,57	-	80,08	-	10,17	203,40	2,32	46,40
1+300	2,293	5,995	0,000	0,000	0,000	0,000	10,00	2,29	7,35	-	0,10	-	-	22,93	73,52	_	0,97		12,89	257,80	5,65	113,00
1+320	3,683		0,000	0,000	0,000	0,000	10,00	5,98	12,47		-	-	-	59,76	124,71	-	-	_	13,78	275,60		133,40
1+340	0,654		0,000		0,000	0,000	10,00	4,34	11,08		0,19	-	-	43,37	110,83	-	1,92	-	11,31	226,20		71,40
1+360	0,000		0,000		0,000	0,000	10,00	0,65	4,90		1,42	-	-	6,54	49,00	-	14,18	-	11,48	229,60		73,40
1+380	0,000		0,000		0,000	0,000	10,00	-	0,29		2,99	-	-	-	2,93	-	29,86	-	10,73	214,60	-	54,80
1+400	0,000		0,000		0,000	0,000	10,00	-	0,29		3,07	-	-	-	2,92	-	30,73	-	10,59	211,80		54,20
1+420	0,000		0,000		0,000	0,000	10,00	-	1,56		2,08	-	-	-	15,62	-	20,81	-	10,81	216,20		59,20
1+440	0,000		0,000		0,000	0,000	10,00	-	1,27		6,05	-	-	-	12,70	_	60,49	-	11,43	228,60	3,49	69,80
1+460	0,000		0,000		0,000	0,000	10,00	-	0,61		5,81	-	-	-	6,07	_	58,13	-	10,66	213,20		54,80
1+480	0,449	-	0,000		0,000	0,000	10,00	0,45	5,93		0,70	-	-	4,49	59,34	-	6,95	-	11,27	225,40		69,80
1+500	0,000		0,000		0,000	0,000	10,00	0,45	10,31		0,16	-	-	4,49	103,11	-	1,63		10,61	212,20	-	59,20
1+520	0,000		0,000		0,000	0,000	10,00	-	8,72		-	-	-	-	87,24	-	-	-	10,40	208,00		54,00
1+540	0,000		0,000		0,000	0,000	10,00	-	3,74		2,74	-	-	-	37,40		27,42	-	10,64	212,80	2,69	53,80
1+560	0,000		0,000		0,000	0,000	10,00	-	-	-	6,13		-	-	-	-	61,28	-	10,73	214,60		56,20
1+580	12,189		0,000		0,000	0,000	10,00	12,19	6,31		3,39	-	-	121,89	63,13	-	33,86	-	14,32	286,40		144,40
1+600	0,000		0,000		0,000	0,000	10,00	12,19	11,10		-	-	-	121,89	110,96	-	46.33	-	11,21	224,20		71,60
1+620	0,000		0,000		0,000	0,000	10,00	-	4,78	-	4,63	-	-	-	47,83	-	46,32	-	11,03	220,60		61,60
1+640	0,000		0,000		0,000	0,000	10,00	-	-		10,43	-	-		-		104,33	-	11,25	225,00		66,40
1+660 1+680	0,000		0,000		0,000	0,000	10,00	-			8,04			-	-	-	80,39 44,13	-	10,55	211,00 210,60		52,40 46,40
1+700	0,000		0,000		0,000	0,000	10,00 10,00	-		-	4,41 4,08			-	-		40,81	-	10,53 10,49	210,60		51,00
1+720	0,000		0,000		0,000	0,000	10,00		0,17		4,08				1,67		48,75		10,49	219,40		62,00
1+740	0,000		0,000		0,000	0,000	10,00		0,17		3,29				4,19		32,92		10,24	204,80		48,20
1+760	0,000		0,000	i	0,000	0,000	10,00	-	0,42		2,78	-	-	-	2,52		27,82	-	10,58	211,60		52,40
1+780	0,000		0,000		0,000	0,000	10,00	-	0,03		5,48				0,25	-	54,77		10,58	210,20		52,80
1+800	0,000		0,000		0,000	0,000	10,00		1,19		4,16				11,85		41,55		10,66	213,20		54,80
1+820	0,000		0,000		0,000	0,000	10,00	-	1,20		4,52				12,01	-	45,19		10,83	216,60		59,00
1+840	0,000		0,000		0,000	0,000	10,00	-	0,18		7,49	-	-	-	1,83	-	74,90		11,20	224,00		67,20
1+860	0,000		0,000		0,000	0,000	10,00	-	0,14		10,76	-	-	-	1,42	-	107,58	-	11,48	229,60		70,20
1+880	4,595	i	0,000	i	0,000	0,000	10,00	4,60	6,34		6,65	-	-	45,95	63,36	-	66,50	-	11,07	221,40		70,40
1+900	7,026		0,000		0,000	0,000	10,00	11,62	12,28			-	-	116,21	122,79		-	-	13,30	266,00		121,00
1+920	0,000		0,000	3,639	0,000	0,000	10,00	7.03	5,94		3,64	-	-	70.26	59.43	-	36,39		10,80	216,00		56,40
1+940	0,000		0,000	3,024	0,000	0,000	10,00	- 7,03	-	-	6,66	-	-			-	66,63	-	11,05	221,00		62,00
1+960	0,000		0,000	3,909	0,000	0.000	10,00	-	-		6,93	-	-	-	-	-	69.33	-	10,69	213,80		54,00
2.300	0,000	- 0,000	0,000		0,000	0,000					0,55						03,00					3 1,00

1+980	0,000	1,561	0,000	0,000	0,000	0,000	10,00	-	1,56	-	3,91	-		-	15,61	-	39,09	-	10,28	205,60	2,57	51,40
2+000	3,820	6,557	0,000	0,000	0,000	0,000	10,00	3,82	8,12	-	-	-	-	38,20	81,18	-	-		12,22	244,40	4,89	97,80
2+020	10,817	6,514	0,000	0,000	0,000	0,000	10,00	14,64	13,07	-	-	-	-	146,37	130,71	_	-	-	13,64	272,80	6,50	130,00
2+040	0,000	0,000	0,000	6,652	0,000	0,000	10,00	10,82	6,51	-	6,65	-	-	108,17	65,14	-	66,52	-	11,20	224,00	3,25	65,00
2+060	0,000	0,000	0,000	4,772	0,000	0,000	10,00	-	-	-	11,42	-	-		-	-	114,24	-	10,99	219,80	2,99	59,80
2+080	0,000	0,000	0,000	3,358	0,000	0,000	10,00	-	-	-	8,13	-	-			_	81,30	-	10,71	214,20	2,75	55,00
2+100	0,000	0,000	0,000	5,566	0,000	0,000	10,00	-	-	-	8,92	-	-	-	-	-	89,24		11,63	232,60	3,69	73,80
2+120	0,000	0,000	0,000	6,288	0,000	0,000	10,00	-		-	11,85	-	-	-	-	-	118,54	-	11,54	230,80	3,59	71,80
2+140	0,000	0,000	0,000	7,187	0,000	0,000	10,00	-	-	-	13,48	-	-		-		134,75	-	11,94	238,80	4,07	81,40
2+160	0,000	0,000	0,000	6,497	0,000	0,000	10,00	-	-	-	13,68	-	-	-	- 1	-	136,84	-	11,82	236,40	3,95	79,00
2+180	0,000	0,000	0,000	4,181	0,000	0,000	10,00	-	_	-	10,68	-	-	-	-	-	106,78	-	11,16	223,20	3,17	63,40
2+200	0,000	0,000	0,000	5,630	0,000	0,000	10,00		-	-	9,81	-	-	-	-		98,11	-	11,30	226,00	3,31	66,20
2+220	0,000	0,000	0,000	4,386	0,000	0,000	10,00		-	-	10,02	-	-	-	-	-	100,16	-	11,08	221,60	3,08	61,60
2+240	5,470	3,111	0,000	0,835	0,000	0,000	10,00	5,47	3,11	-	5,22	-	-	54,70	31,11		52,21	-	14,87	297,40	7,42	148,40
2+260	0,000	0,000	0,000	5,301	0,000	0,000	10,00	5,47	3,11	-	6,14	-	-	54,70	31,11	-	61,36	-	11,10	222,00	3,11	62,20
2+280	0,000	0,000	0,000	5,249	0,000	0,000	10,00	-	-	-	10,55	-	-	-	-	-	105,50	-	11,14	222,80	3,14	62,80
2+300	0,000	0,000	0,000	7,981	0,000	0,000	10,00	-	-	-	13,23	-	-	-	-	-	132,30	-	11,63	232,60	3,68	73,60
								-	-	-	7,98	-	-	-	-	-		-				
					S	OMATÓRIO	RAMO RLE							1.019,92	1.577,70	-	3.621,67	-		14.270,02		4.269,80

								1						1					6054 D5 118	40574	FAU FD//	145170
EMPR. 1				REA			SEMID.			50	MAS					VOLU	JMES		ÁREA DE LII	VIPEZA	ENLEIV <i>A</i>	INIENTO
ESTACA	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	JLIVIID.	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	CORTE 3a	A. INF	A. SUP	ESCAL.	CORTE 1a	CORTE 2a	LARGURA	ÁREA	LARGURA	ÁREA
1+700	0,000	0,000	0,000	17,000	0,000	0,000	10,00	-	-	-	17,00	-	-	-	-		- 170,00		0,00	0,00	0,00	0,00
1+720	0,000	0,000	0,000	22,000	0,000	0,000	10,00	-	-	-	39,00	-	-	-	-		- 390,00	-	8,78	175,60	2,79	55,80
1+740	0,000	0,000	0,000	22,000	0,000	0,000	10,00	-	-	-	44,00	-	-	-	-		- 440,00	-	13,48	269,60	3,38	67,60
1+760	0,000	0,000	0,000	22,000	0,000	0,000	10,00	-	-	-	44,00	-	-	-	-		- 440,00	-	19,11	382,20	3,23	64,60
1+780	0,000	0,000	0,000	22,110	0,000	0,000	10,00	-	-	-	44,11		-	-	-		- 441,10	-	10,96	219,20	2,96	59,20
1+800	0,000	0,000	0,000	22,000	0,000	0,000	10,00	-	-	-	44,11		-	-	-		- 441,10	-	10,83	216,60	2,84	56,80
1+820	0,000	0,000	0,000	22,000	0,000	0,000	10,00	-	-	-	44,00	-	-	-	-		- 440,00	-	19,11	382,20	3,23	64,60
1+840	0,000	0,000	0,000	22,000	0,000	0,000	10,00	-	-	-	44,00	-	-	-	-		- 440,00	-	10,96	219,20	2,96	59,20
1+860	0,000	0,000	0,000	17,000	0,000	0,000	10,00	-	-	-	39,00	-	-	-	-		- 390,00	-	10,83	216,60	2,84	56,80
1+880	0,000	0,000	0,000	0,000	0,000	0,000	10,00	-	-	-	17,00	-	-	-	-		- 170,00	-	10,32	206,40	2,42	48,40
						SOMATÓRIO) EMPRÉSTI	MO 1									3.762,20			2.287,60		533,00

TOTAL DE ESCAVAÇÃO		2.836,69	
TOTAL DE ATERRO CAMADA INFERIOR		4.473,40	
TOTAL DE ATERRO CAMADA SUPERIOR		2.602,71	
LIMPEZA DE ÁREAS ATÉ 15cm			29.033,26
VOLUME DE LIMPEZA PARA BF			4.354,99
REVEGETAÇÃO TALUE	ES		8.470,39
CANTEI	OS CANTEIRO 1	740	
		647	
		26	
		7	
		729	
		76	
		87	
		18	
TOTAL			10.800,39

Telefone: (51) 98528 1181 - Celular: (51) 98117 8044 – e-mail: galmarc.ga	Av. Bento Gonçalves nº 1294/202 - Bairro Partenom - Porto Alegre/RS
nail: galmarc.galmarc@gmail.com	nom - Porto Alegre/RS

ORIGEM DESTINO DMT DENSIDADI MOMENTO CORTE LOCALIZAÇÃO VOLUME **ATERRO** LOCALIZAÇÃO T/M3 T.K.M INÍCIO TOTAL 1ª CAT 2ª CAT 3ª CAT INÍCIO CG NÚMERO FINAL CG NUMERO FINAL KM C-A 0+010 0+250 0+130 217,01 168,96 48,05 AI-A 0+010 0+250 0+130 0,05 C - B 0+230 86.50 0+010 0+250 0+010 0+120 1.530,83 1.444.33 0+130 0.10 AI-A C- E 0+000 0+030 0+015 0+010 0+250 167,83 167,83 0+130 0,10 AI-A 0+070 C-F 0+000 0+035 328,45 328,45 AI-A 0+010 0+250 0+130 0,15 C - G 0+090 0+120 0+110 101,38 101,38 AI-A 0+010 0+250 0+130 1,50 C - H 0+090 0+120 0+110 194,34 194,34 AI-A 0+010 0+250 0+130 1,30 C-BR 1+380 1+840 1+500 1.030,48 431,40 AI-A 0+010 0+250 0+130 1,50 256,69 AI-A 0+010 0+250 0+130 1,50 342,39 AI-B 0+140 0+220 0+130 0,50 JAZIDA 173+000 5.628,63 1.392,40 AS-A 0+010 0+250 0+130 8,60 1,65 19.758,21 552,71 0+140 0+220 0+130 7.842,98 AI-B 8,60 1,65 0+220 0+130 8.023,89 565,46 AS-B 0+140 8,60 1,65 994,73 AI-C 0+010 0+080 0+050 8,60 1,65 14.115,28 700,57 AS-C 0+010 0+080 0+050 8,60 1,65 9.941,09 697,66 0+010 0+070 0+040 8,60 1,65 9.899,77 AI-D 725,09 0+010 0+070 0+040 10.289,00 AS-D 8,60 1,65 SUB-TOTAL 9.198,95 2.836,69 6.362,25 C-RLE 1+060 2+310 1.325,90 1+800 3.621,67 AI-RLE 1+300 2+260 1+650 0,15 2.051,01 AS-RLE 1+200 2+260 1+650 0,15 244,76 BF 0-100 0+000 0-050 0,50 SUB-TOTAL 3.621,67 3.621,67 TRANSPORTE LOCAL EM CAMINHÃO BASCULANTE 10M3 RODOVIA PAVIMENTADA 79.870,22

QUADRO DE ORIGEM E DESTINO

INTERSEÇÕES

LIMPEZA DA CAMADA VEGETAL D<15CM
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT. DMT >50 <200M
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT. DMT >1200 <1400M
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT. DMT >1400 <1600M
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ºCAT. DMT >50 <200M
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ºCAT. DMT >50 <200M
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ºCAT. DMT >400 <600M
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ºCAT. DMT >1400 <1600M
COMPACTAÇÃO A 100% DO PN
COMPACTAÇÃO A 100% DO PI
ESCAVAÇÃO DE MATERIAL DE JAZIDA
TRANSPORTE DE SOLO CAMINHO REVESTIDO

RLE

LIMPEZA DA CAMADA VEGETAL D<15CM
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT. DMT >50 <200M
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT. DMT >400 <600M
ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ºCAT. DMT >50 <200M
COMPACTAÇÃO A 100% DO PN
COMPACTAÇÃO A 100% DO PI
ESPALHAMENTO E CONFORMAÇÃO DE BOTA FORA

11.253,44	m²
2.109,57	m³
194,34	m³
532,78	m³
134,55	m³
342,39	m³
256,69	m³
4.473,40	m³
2.602,71	m³
5.628,63	m^3
79.870,22	TKM
14.270,02	m²
1.325,90	m³
244,76	m³
2.051,01	m³
1.019,92	m^3
1.577,70	m^3
244,76	m^3

8 – PROJETO DE PAVIMENTAÇÃO

8 – PROJETO DE PAVIMENTAÇÃO

Para orientar a determinação da pavimentação foi verificada a disponibilidade de materiais nas proximidades do acesso. A região não é farta em rochas, mas existem britagem a médias distâncias, o que já sugere a utilização destes materiais no corpo do pavimento.

8.1 – Características para o projeto:

Para determinar o pavimento é necessário verificar no mínimo duas condicionantes:

- Número "N" adotou-se o número de aplicação de eixos padrão ao longo de 10 anos de uso da Rodovia e da Rua Lateral, conforme apresentado nos Estudos de Tráfego, N= 1,45X10^7 para a BR-471 e N= 8,70X10^5 para a Rua Lateral.
- CBR ensaiado de <u>6,84%</u>. Sendo a média 10% o mínimo 7% e o desvio padrão das amostras 3,16%.

8.2 - Método de dimensionamento

Para uma simplificação do projeto foi utilizado o método do DNER.

O Manual de Pavimentação, publicação IPR-719 na tabela 32 estabelece como espessura mínima do pavimento em função do número N

Tabela 32 - Espessura mínima de revestimento betuminoso

N	Espessura Mínima de Revestimento Betuminoso
N ≤ 10 ⁶	Tratamentos superficiais betuminosos
$10^6 < N \le 5 \times 10^6$	Revestimentos betuminosos com 5,0 cm de espessura
$5 \times 10^6 < N \le 10^7$	Concreto betuminoso com 7,5 cm de espessura
$10^7 < N \le 5 \times 10^7$	Concreto betuminoso com 10,0 cm de espessura
$N > 5 \times 10^7$	Concreto betuminoso com 12,5 cm de espessura

Para a Rua Lateral adotou-se o TSD e para a BR-471 adotou-se o CBUQ com 10cm de espessura, aplicado em duas camadas.

A correlação entre o número N e o CBR estabelecida no gráfico em anexo determina a espessura em centímetros do pavimento. Uma simplificação da equação:

$Ht = 77,67 \times N ^0,0482 \times CBR ^-0,598$

Para o pavimento da BR-471

Pelo gráfico, obteve-se uma espessura aproximada total de 55 cm.

Pela resolução da equação, obteve-se uma espessura total de 54,45 cm.

Para o pavimento da Rua Lateral

Pelo gráfico, obteve-se uma espessura aproximada total de 50 cm.

Pela resolução da equação, obteve-se uma espessura total de 47,54 cm.

A utilização da capa em CBUQ na composição estrutural do pavimento, proporciona a redução nesta espessura, a tabela 31 do Manual de Pavimentação esclarece estes equivalentes estruturais.

Tabela 31 - Coeficiente de equivalência estrutural

Componentes do pavimento	Coeficiente K
Base ou revestimento de concreto betuminoso	2,00
Base ou revestimento pré-misturado a quente, de graduação densa	1,70
Base ou revestimento pré-misturado a frio, de graduação densa	1,40
Base ou revestimento betuminoso por penetração	1,20
Camadas granulares	1,00
Solo cimento com resistência à compressão	
a 7 dias, superior a 45 kg/cm	1,70
Idem, com resistência à compressão a 7	1,40
dias, entre 45 kg/cm e 28 kg/cm	1,20
Idem, com resistência à compressão a 7	
dias, entre 28 kg/cm e 21 kg/cm	

A adoção de CBUQ, indicado pela tabela 32 do manual, permite a redução da camada em função de seu equivalente estrutural à brita = 2,0.

A utilização da imprimação com uma espessura de penetração na camada granular da ordem de 1,5cm também poderia reduzir a espessura total do pavimento, condição desconsiderada em função dos possíveis erros executivos.

Pavimento da BR-471

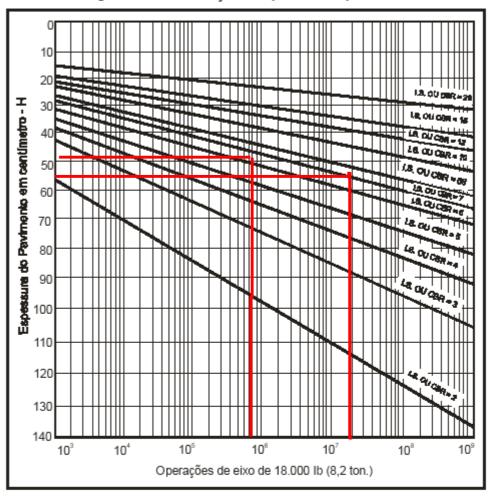
Primeiramente para definir as camadas do pavimento na BR-471 identificou-se fatores locais, como a presença de solos com grande umidade, na ordem 2 % acima da umidade ótima ensaiada, direcionando a escolha de recursos capazes de impedir alterações a base e a sub-base, foi adotada uma camada denominada reforço drenante, com espessura de 25cm executado com rachão ou pedra de mão.

A camada de Rolamento foi adotada com espessura de 10cm, como recomendado pelo manual de projetos de pavimento, devendo ser executado em CBUQ, o CAP deverá sem modificado por polímero.

A Base foi calculada e resultou em uma espessura de 14cm, como a norma estabelece a espessura mínima de 15cm, foi obedecida esta espessura.

A Sub-base foi calculada pela resultante de 55cm - 20cm (R) - 15cm = 20 cm, devendo ser executada em Macadame seco.

Pavimento da RLE


As características do material de jazida foram levadas em consideração para traçar a estrutura deste pavimento, a porção granular descartada durante os ensaios da parte fina acrescentam coeficiente estrutural para o todo.

A camada de Rolamento foi adotada com espessura de 2,5cm, como recomendado pelo manual de projetos de pavimento, devendo ser executado em TSD, o ligante será o RL aplicado a 2 litros por metro quadrado concluído de tratamento. O primeiro banho será de 1,20 litros, o segundo banho será de 0,80 litros, o resultante da extração do betume residual deverá ser da ordem de 0,67 litros de toda a camada aplicada.

A Base foi calculada e resultou em uma espessura de 12cm, como a norma estabelece a espessura mínima de 15cm, foi obedecida esta espessura.

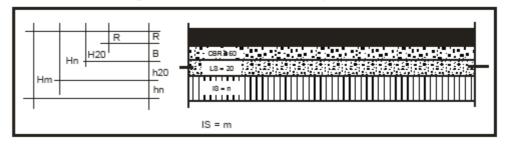

A Sub-base foi calculada pela resultante de 48 cm - 00 cm (R) - 15 cm = 33 cm, devendo ser executada com material da jazida compactado em duas camadas distintas sendo a primeira com 17cm e a segunda com 16cm.

Figura 43 - Determinação de espessuras do pavimento

 H_{t} = 77,67 . N $^{0.0482}$. CBR $^{\text{-0.598}}$

Figura 44 - Dimensionamento do pavimento

MT/DNIT/DPP/IPR

Como orientação à execução, foi apresentado no Volume II a seção tipo de pavimentação, inclusive com a origem dos materiais pétreos, jazida e do CBUQ.

Memória de cálculo das quantidades de pavimentação da Interseção do Passo do Adão.

MEMÓRIA DE QUANTIDADES DE PAVIMENTAÇÃO - DISTRITO INDUSTRIAL

	~		L	1		1 1				
ESTACA	EXTENSÃO	LARGURA	ÁREA	ESPESSURA	VOLUME	DENSIDADE F	PESO	TEOR	TACHA	PESO
			~		~ -					
	~		INTERSEÇA	O PASSO DO A	DAO					
PAVIMENTAÇ	AO 1ª CAMAI									
		INTERSEÇÃO	6.740,00	0,05			842,50			
	~	PARADAS	315,00	0,05	15,75	2,50	39,38			
PAVIMENTAÇ	AO 2ª CAMAI	DA DE CBUQ								
		INTERSEÇÃO	6.740,00	0,05	337,00	2,50	842,50			
	_									
PAVIMENTAÇ	AO BGS									
			6.779,60	0,15	1.016,94					
	~ -									
PAVIMENTAÇ	AO MACADA	ME								
			6.817,00	0,20	1.363,40					
		== /5 . 0~ =								
REFORÇO/CA	MADA DRENA	ANTE/RACHÃO			. =0=					
			6.817,00	0,25	1.704,25					
IN 4DD 12 44 0 7 0										
IMPRIMAÇÃO			6 770 60						4.3	0.44
			6.779,60						1,2	8,14
PINTURA DE L	ICAÇÃO									
PINTUKA DE L	IGAÇAU		13.480,00						0,5	6,74
			315,00						0,5	
CAP			313,00						0,5	0,16
CAP							1.724,38	4,75%		81,91
							1.724,38	4,75%)	61,91
REGULARIZAÇ	ÃO DO SUBLE	EITO	6.817,00							
NEGOLANIZAÇ		-110	0.617,00							
TRANSPORTE	CAMINHÃO F	BASCULANTE 10	M³ RODOVIA	A PAV						
SERVIÇO	S	VOLUME	DENSIDAD		DMT	MOMENTO				
BGS		1.016,94	2,4			5 108.609,19				
MACADAME		1.363,40	2,4			5 145.611,12				
RACHÃO PEDI	RA MÃO	1.704,25	1,8			136.510,43				
CBUQ		674,00	2,5			5 74.982,50				
2200		3, 1,00	2,3	1.003,00	TOTAL	465.713,24				
					. 5 17 12	.55., 15,24				

Memória de cálculo das quantidades de pavimentação da Interseção de entrada da Rua Lateral.

							-	_		
ESTACA	EXTENSÃO	LARGURA	ÁREA	ESPESSURA	VOLUME	DENSIDADE PE	SO	TEOR	TACHA PE	SO
DA1	07 0 10 5	DA DE 05.115	INTERSEÇÃO	DA RLE						
PAVIMENTA	AÇÃO 1ª CAMA		2 275			2	207			
		NOVO	3.070,00	0,04	122,80	2,50	307,00			
DA\/IN4ENITA	CÃ O 28 CA N 4 A	DA DE CRUIO								
PAVIIVIENIA	AÇÃO 2ª CAMA		2 070 00	0.00	104.30	3.50	460.50			
		NOVO FRESAGEM	3.070,00 240,00	0,06 0,05	184,20 12,00	2,50 2,50	460,50 30,00			
		INLOAGEIVI	240,00	0,05	12,00	2,30	30,00			
FRESAGEM [DE ENCAIXF									
1+380	1+780	0,30	240,00	0,05	12,00					
1.500	1.750	0,50	240,00	0,03	12,00					
PAVIMENTA	CÃO BGS									
	,		3.150,00	0,20	630,00					
			,							
MACADAME	SECO/REFORG	ÇO								
			3.150,00	0,40	1.260,00					
IMPRIMAÇÃ	(0									
			3.150,00						1,2	3,78
	~ .									
PINTURA DE	: LIGAÇAO		C 202 27						o =	
			6.380,00						0,5	3,19
CAD										
CAP							797,50	4,759	6	37,88
							757,50	4,/5	ru	37,88
REGUI ARI74	AÇÃO DO SUBLI	FITO	3.150,00							
COD MILE	.ş. 10 DO 30DL		3.130,00							
TRANSPORT	E CAMINHÃO I	BASCULANTE 10	M³ RODOVIA	\ PAV						
SERVIÇO		VOLUME	DENSIDADI		DMT	MOMENTO				
BGS		630,00	2,4	1.512,00	44,5	67.284,00				
RACHÃO		1.260,00	2,4			134.568,00				
CBUQ		307,00	2,5		44,5					
FRESADO		12,00	2,5							
					TOTAL	236.005,75				

Memória de cálculo das quantidades de pavimentação da Rua Lateral.

ESTACA	EXTENSÃO	LARGURA	ÁREA	ESPESSURA	VOLUME		DENSIDADE	PESO	TEOR	TACHA	PESO
			ΡΙΙΔΙ ΔΤΕΡΛ	L ESQUERDA -	OPCÃO 1						
TRATAMENTO	SUPERFICIAL		NUALAILNA	L LOQUENDA -	OFÇAO 1						
			10.950,00	0,025	273,	,75					
PAVIMENTAÇÃ	ÃO BGS										
			11.190,00	0,15	1.678,	,50					
REFORCO CON	M MATERIAL JA	AZIDA									
			11.550,00	0,33	3.811,	,50					
IMPRIMAÇÃO			44 400 00								40.40
			11.190,00							1,2	13,43
EMULSAO DE	RUPTURA LEN	TA									
								10.950,00		2	21,90
REGULARIZAÇ	ÃO DO SUBLEI	TO	11.550,00								
TR∆NSP∩RTE	CΔΜΙΝΗÃΟ ΒΔ	SCULANTE 10N	⁄I³ R∩D∩VI∆ PΔ	W							
SERVIÇO	C/ ((V)) (V)	VOLUME	DENSIDADE		DMT		MOMENTO				
BGS		1.678,50	2,4	4.028,40		14,5	179.263,80				
BRITA TSD		273,75	1,8	492,75	4	14,5	21.927,38				
					TOTAL		201.191,18				
TRANSPORTE	CAMINHÃO BA	SCULANTE 10N	∕I³ RODOVIA RF	VESTIMENTO							
SERVIÇO		VOLUME	DENSIDADE		DMT		MOMENTO				
-	M MATERIAL JA	3.811,50	1,65	6.288,98	7	8,6	54.085,19				
					TOTAL		54.085,19				

9 – PROJETO DE DRENAGEM E OBRAS DE ARTE CORRENTES

9 – PROJETO DE DRENAGEM E OBRAS DE ARTE CORRENTES

A drenagem do segmento mostrou-se muito simples, com as soluções apontadas em projeto, as drenagens de talvegue necessitaram ser replicadas para a Rua Lateral. Não há registro de alagamentos ou danos na drenagem existe.

9.1 - Drenagem Superficial

Destinada ao escoamento das águas pluviais incidentes sobre a pista e os taludes foi dimensionada observando os dispositivos adjacentes à obra.

Foram indicados os seguintes dispositivos de drenagem superficial:

- Sarjeta triangular de concreto: STC-03 e STG-01 detalhe em planta, destinada a retirar e direcionar ordenadamente as águas coletadas sobre a pista em situação de corte para o talvegue mais próximo;
- Meio fio de concreto: MFC-05, detalhe em planta, destina-se à retirada e ao direcionamento ordenado das águas coletadas sobre a pista, em situação de aterro, para o ponto de coleta, as EDA's entrada para descida d'água seguido de dissipador. Quando pintado (caiado), acrescenta muito à segurança viária, foi utilizado também no contorno dos canteiros dos ramos leste e oeste;
- Transposição de segmento de sarjeta: TSS-02, aplicado para permitir o acesso à propriedades e caminhos de máquinas por sobre a sarjeta sem danificá-las ou impedir o tráfego;
- Dissipadores de energia: DSS-02 e DSB, aplicados nas saídas de sarjetas ou descidas d'água e saídas de bueiros, reduzem a velocidade de escoamento das águas concentradas pelas sarjetas e meios fios, evitando a formação de erosões;
- Bocas de lobo: BLS-01 e BLS-02, consideradas drenagem urbana, coletam as águas superficiais em pontos sem saída de escoamento destinando-as para tubulações, destinando-as a talvegues;
- Caixas coletoras de Sarjeta: coletam as águas das sarjetas e destinem-nas para as tubulações de travessia por sob a plataforma.

9.2 - Drenagem Subterrânea

Destinadas á reduzir o nível dos lençóis freáticos, normalmente é adotado em cortes, para o segmento foram indicados drenos do tipo sub superficiais.

9.3 – Drenagem de Talvegue

Destinadas a conduzir as águas por sob a pista, são aplicadas para evitar o acúmulo de águas nas adjacências da rodovia.

- Bueiro simples tubular de concreto: BSTC D=40, D=60 e D=80cm, indicados para ligar as bocas de lobo e destinar as águas coletadas para o talvegue mais próximo, através da boca de bueiro projetada.

As planilhas que seguem compõem as notas de serviço de drenagem, os detalhes executivos estão no Volume II.

9.4 – Drenagem das Interseções

Os quadros a seguir quantificam e apresentam as notas de serviço para sua implantação.

MEIO FIO PREMOLDADO DE CONCRETO MFC-05

LOCAL	INÍCIO	FINAL	EXTENS.	LADO	OBS
BR-471	0+210	0+265	172,00	EX	CANTEIRO NORTE
BR-471	0+275	0+305	91,00	EX	CANTEIRO RÓTULA
BR-471	0+315	0+370	139,00	EX	CANTEIRO SUL
RAMO C	0+040	0+100	60,00	LE	BORDO ESQUERDO
RAMO D	0+040	0+120	80,00	LD	BORDO DIREITO
RAMO A	0+035	0+080	45,00	LD	DORDO DIREITO
RAMO A	0+135	0+142	24,00	LD	CANTEIOR OESTE
RAMO B	0+016	0+060	57,00	LD	BORDO
RAMO F	0+000	0+048	48,00	LD	BORDO
RAMO B	0+107	0+112	12,00	LD	CANTEIRO LESTE
RAMO B	0+130	0+220	90,00	LD	BORDO
BR-471	1+436	1+505	140,00	EX	CANTEIRO NORTE
BR-471	1+650	1+702	104,00	EX	CANTEIRO SUL
BR-471	1+652	1+660	20,00	LE	CANTEIRO LESTE
4					
SOMA			1.082,00	m	

SARJETA TRIANGULAR DE CONCRETO STC-03

LOCAL	INÍCIO	FINAL	EXTENS.	LADO	OBS
RAMO E	0+000	0+060	60,00	LD	CORTE
RAMO F	0+050	0+086	36,00	LD	CORTE
RAMO F	0+045	0+055	9,00	LD	CORTE
RAMO E	0+000	0+077	77,00	LD	CORTE
BR-471	1+440	1+560	119,00	LE	CORTE
BR-471	1+565	1+640	80,00	LE	CORTE
RAMO H	0+055	0+100	44,00	LD	CORTE
RAMO H	0+100	0+122	22,00	LD	CORTE
RAMO G	0+110	0+130	23,00	LE	CORTE
SOMA			470,00	m	

BOCA DE LOBO SIMPLES BLS

LOCAL	KM	LADO	TIPO	COTA FD	COTA TP	ALTURA	ESCAV L	ESCAV C	VOL. C	L CX	C CX	VOL CX	REATERRO
RAMO A	0+068	LE	BLS-02	33,232	35,323	2,091	1,8	1,8	6,775	1,4	1,4	4,098	2,676
RAMO A	0+102	LE	BLS-02	33,729	35,820	2,091	1,8	1,8	6,775	1,4	1,4	4,098	2,676
RAMO A	0+131	LE	BLS-02	34,845	36,286	1,441	1,8	1,8	4,669	1,4	1,4	2,824	1,844
RAMO A	0+160	LE	BLS-02	35,668	37,269	1,601	1,8	1,8	5,187	1,4	1,4	3,138	2,049
RAMO B	0+097	LE	BLS-02	35,901	37,492	1,591	1,8	1,8	5,155	1,4	1,4	3,118	2,036
RAMO B	0+120	LE	BLS-02	35,078	36,669	1,591	1,8	1,8	5,155	1,4	1,4	3,118	2,036
RAMO B	0+140	LE	BLS-02	34,641	36,141	1,500	1,8	1,8	4,860	1,4	1,4	2,940	1,920
RAMO B	0+154	LE	BLS-02	34,415	35,915	1,500	1,8	1,8	4,860	1,4	1,4	2,940	1,920
RAMO B	0+080	LD	BLS-02	35,919	37,927	2,008	1,8	1,8	6,506	1,4	1,4	3,936	2,570
SOMA					9,000	unid.			49,941			30,211	19,730
	TIPO												
			BLS-02		9,000	unid.							

CAIXA COLETORA DE SARGETA CCS-01

LOCAL	KM	LADO	COTA FD	COTA TP	ALTURA	ESCAV L	ESCAV C	VOLUME	L CX	C CX	VOL CX	REATERRO
RAMO F	0+048	LD	35,579	37,660	2,081	1,8	1,8	6,742	1,4	1,4	4,079	2,664
RAMO G	0+110	LE	39,478	40,730	1,252	1,8	1,8	4,056	1,4	1,4	2,454	1,603
SOMA				2,000			ESCAVAÇÃO NA CPU					

BOCA DE BUEIRO

DOCKDE	OLINO					
LOCAL	KM	LADO	DIÂMETRO	ESCONSID	COTA FD	ALA
RAMO B	0+142	LD	60	0	35,279	RETA
RAMO B	0+154	LD	60	0	33,749	RETA
RAMO A	0+068	LD	60	0	32,517	RETA
RAMO A	0+102	LD	60	0	32,925	RETA
RAMO H	0+100	LD	40	0	39,531	RETA
SOMA					5,000	
	TIPO		D=400	ESC 0	1	
			D=600	ESC 0	4	

DISSIPADOR DE ENERGIA

LOCAL	KM	LADO	TIPO
RAMO A	0+034	LD	DES-02
RAMO B	0+143	LD	DEB-03
RAMO B	0+220	LD	DES-02
BR-471	1+713	LE	DES-02
			ļ
		DES-02	3
		DEB-03	1

				BUEIROS DIS	STRITO IN	DUSTRIAL							•	
	DISP.	BUEIROS	,		D	ISP.	INCLIN		ESCAVAÇÂ			ICRETO	REAT	ERRO
ENTRADA	COTA	400	600	800	FINAL	COTA	%	ENTRAD/	SAÍDA	VOLUME	ESPES.	VOLUME	VOL TUB	ATERRO
BLS-02	35,668		26,3		BLS-02	34,845	3,13%	1,6	1,6				10,12	57,21
BLS-02	34,845		26,50		BLS-02	33,729	4,21%	1,6	1,6	67,84			10,19	57,65
BLS-02	33,729		16,10		BOCA	32,925	4,99%	1,6	1,6	41,22			6,19	35,02
			8 8 8 9 8 9 8											
BLS-02	33,232		14,30		BOCA	32,517	5,00%	1,6	1,6	36,61			5,50	31,11
			8 8 8 9 9 9 9 9											
BLS-02	35,901	1	21,10		BLS-02	35,078	3,90%	1	1,6				8,12	
BLS-02	35,078		17,90		BLS-02	34,641	2,44%		1,6				6,89	
BLS-02	34,641		13,10		BLS-02	34,415	1,73%		1,6	33,54			5,04	
BLS-02	34,415		18,80		BOCA	33,749	3,54%	1,6	1,6	48,13			7,23	40,90
CCS-01	36,314		8,4		CCS-01	36,23	1,00%	1 1	1,6				3,23	
CCS-01	36,23		31,1		BLS-02	35,919	1,00%		1,6	79,62			11,96	
BLS-02	35,919	l .	14		CCS-01	35,779	1,00%	· '	1,6	35,84			5,39	,
CCS-01	35,779		50		BOCA	35,279	1,00%	1,6	1,6	128,00			19,23	108,77
			8 8 8 8 8 8 8 8											
CCS-01	39,84				CCS-01	39,678	1,16%		1,6	35,84			5,39	
CCS-01	39,678	29,1			BLS-02	39,531	0,51%	1,6	1,6	74,50	0,2	9,312	11,19	53,99
D														
RUALATI	ERAL ESQUE	KDA I												
			8 8 8 8 8 8 8 8											
			8 8 8 8 8 8 8 8 8											
	TOTAL:	43,1	257,6	0,00					TOTAL:	769,79		0.21	TOTAL:	644,82
	TOTAL.	43,1	237,0		FSCAVAC	ÃO DRENO -	INCLUID		TOTAL.	705,75		3,31	TOTAL.	044,62
					LJCHVAÇI		ÇÃO BOO			49,94				- 19,73
						LJCAVA	- L	CAVAÇÃO		819,73			REATERRO	664,55
							230	LAVAÇAU		013,/3			MEATERRO	004,33

DRENO SUB SUPERFICIAL DSS-02

LOCAL	INÍCIO	FINAL	EXTENS.	LADO	OBS
BR-471	1+420	1+565	145,00	LE	BOCA DE SAÍDA
BR-471	1+565	1+765	204,00	LE	BOCA DE SAÍDA
RAMO B	0+017	0+142	127,00	LD	SAI NA SARJETA
	7				
			_		
			476,00	m	

ENROCAMENTO DE PEDRA JOGADA

LOCAL	KM	LADO	VOLUME
RAMO A	0+068	LD	2,000
RAMO A	0+102	LD	2,000
RAMO B	0+154	LD	2,000
SOMA			6,000

TRANSPORTE CAMINHÃO CARROCERIA 20T COM GUINDAUTO

SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO	
BUEIROS D=40	43,1	0,2168	9,3428	6,5	60,728	
BUEIROS D=60	257,6	0,4273	110,06	6,5	715,4	
BUEIROS D=80	0,00	0,708	0	6,5	0	
				TOTAL	776,13	

TRANSPORTE CAMINHÃO CARROCERIA 9T RODOVIA PAVIMENTADA

SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO
MEIO FIO	1.082,00	0,09	97,38	6,5	632,97
GRAMA	-	0,0364		6,5	0
BLOCOS PARA BOCA DE LOBO	9,000	2,84	25,560	6,5	166,14
				TOTAL	799,11

TRANSPORTE CAMINHÃO BASCULANTE 6M3

SED) #60	CHANTIDADE	DESC LINUTABLE	DECO TOTAL	D14T	1401451150
SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO
PEDRA P/ ENROCAMENTO	6,00	1,65	9,90	44,5	440,55
PEDRA P/DRENO	76,16	1,65	125,66	44,5	5592
SOLO DA ESCAVAÇÃO	155,19	1,50	232,78	44,5	10359
CONCRETO P/ DISSIPADOR	4,00	2,50	10,00	44,5	445
CONCRETO P/ BOCA DE BUEIRO 40	0,42	2,50	1,06	44,5	47,059
CONCRETO P/ BOCA DE BUEIRO 60	0,52	2,50	1,31	44,5	58,184
CONCRETO P/ BOCA DE BUEIRO 80	0,62	2,50	1,55	44,5	68,864
CONCRETO P/ CCS	4,58	2,50	11,46	44,5	509,97
ARGAMASSA PARA BOCA DE LOBO	9,00	0,09	0,81	44,5	36,045
CONCRETO STC	470,00	0,25	118,68	44,5	5281
				TOTAL	22838

9.5 – Drenagem da Rua Lateral

Os quadros a seguir quantificam e apresentam as notas de serviço para sua implantação.

SARJETA TRIANGULAR DE CONCRETO STC-03

LOCAL	INÍCIO	FINAL	EXTENS.	LADO	OBS
RLE	1+720	1+900	184,00	LD	CORTE
RLE	2+206	2+238	34,00	LE	CORTE
RLE	2+200	2+238	36,00	LD	CORTE
RLE	2+238	2+312	75,00	LD	CORTE
RLE	2+250	2+312	66,00	LE	CORTE
				7	
SOMA			395,00	m	

SARJETA TRIANGULAR DE GRAMA STG-01

LOCAL	INÍCIO	FINAL	EXTENS.	LADO	OBS
RLE	1+045	1+050	7,00	LD	CORTE
RLE	1+050	1+088	39,00	LD	CORTE
RLE	1+080	1+322	242,00	LE	CORTE
RLE	1+105	1+322	217,00	LD	CORTE
RLE	1+330	1+538	208,00	LD	CORTE
RLE	1+350	1+589	239,00	LE	CORTE
RLE	1+568	1+589	21,00	LD	CORTE
RLE	1+593	1+727	134,00	LD	CORTE
RLE	1+613	1+900	287,00	LE	CORTE
RLE	1+900	1+970	68,00	LD	CORTE
RLE	1+900	1+970	68,00	LE	CORTE
RLE	2+017	2+030	11,00	LD	CORTE
RLE	2+056	2+185	131,00	LD	CORTE
RLE	2+017	2+205	188,00	LE	CORTE
SOMA			1.860,00	m	

CAIXA COLETORA DE SARGETA CCS-01

LOCAL	KM	LADO	COTA FD	СОТА ТР	ALTURA	ESCAV L	ESCAV C	VOLUME	L CX	ссх	VOL CX	REATERRO
RLE	2+312		36,114	37,614	1,500	1,8			1,4			1,920
RLE	2+312	LD	36,030	37,614	1,584	1,8		<u> </u>	1,4			2,028
RLE	2+238	LD	36,228	38,028	1,800	1,8	1,8	5,832	1,4	1,4	3,528	2,304
RLE	1+900	LD	29,787	31,264	1,477	1,8	1,8	4,785	1,4	1,4	2,895	1,891
RLE	1+586	LD	32,802	34,602	1,800	1,8	1,8	5,832	1,4	1,4	3,528	2,304
RLE	1+050	LD	39,640	40,888	1,248	1,8	1,8	4,044	1,4	1,4	2,446	1,597
SOMA				6,000			ESCAVAÇ	ÃO NA CPI	J			

CAIXA COLETORA DE TALVEGUE CCT-02

LOCAL	KM	LADO	COTA FD	COTA TP	ALTURA	ESCAV L	ESCAV C	VOLUME	L CX	C CX	VOL CX	REATERRO
RLE	1+322	LE	35,540	37,332	1,792	1,8	1,8	5,806	1,4	1,4	3,512	2,294
RLE	1+322	LD	34,942	36,242	1,300	1,8	1,8	4,212	1,4	1,4	2,548	1,664
SOMA				2,000			ESCAVAÇ <i>i</i>	ÃO NA CPI	J			

CAIXA COLETORA DE TALVEGUE CCT-10

LOCAL	KM	LADO	COTA FD	COTA TP	ALTURA	ESCAV L	ESCAV C	VOLUME	L CX	C CX	VOL CX	REATERRO
RLE	2+239	LE	33,538	36,592	3,054	1,8	1,8	9,895	1,4	1,4	5,986	3,909
					7.							
SOMA				1,000			ESCAVAÇ	ÃO NA CPI	J			

BOCA DE BUEIRO

LOCAL	KM	LADO	DIÂMETRO	ESCONSID	COTA FD	ALA
RLE	1+587	LE	80	0	32,479	RETA
RLE	1+900	LE	80	0	32,685	RETA
RLE	2+017	LE	80	0	33,030	RETA
RLE	2+017	LD	80	0	32,685	RETA
SOMA					4,000	
	TIPO		D=400	ESC 0	0	
			D=600	ESC 0	0	

D=800

				BUEIROS DI:	STRITO IN	DUSTRIAL								
D	ISP.	BUEIROS		7	D	ISP.	INCLIN		ESCAVAÇ <i>î</i>	OĚ	CON	ICRETO	REATE	RRO
ENTRADA	СОТА	400	600	800	FINAL	COTA	%	ENTRAD	SAÍDA	VOLUME	ESPES.	VOLUME	VOL TUB	ATERRO
RUA LATE	RAL ESQUE	RDA		-										
CCT-02	35,74			15,2	CCT-02	35,08	4,34%	1,6	1,6	38,91			9,66	29,25
CCS-01	33,002			10,2	BOCA	32,479	5,13%	1,6	1,6	26,11			6,49	19,63
CCS-01	29,987			11,5	BOCA	29,399	5,11%	1,6	1,6	29,44			7,31	22,13
BOCA	33,03			11,5	BOCA	32,685	3,00%	1,6	1,6	29,44			7,31	22,13
BOCA	36,428			12,9	BOCA	35,782	5,01%	1,6	1,6	33,02			8,20	24,82
CCS-01	36,314	8 8 8 8 8	8,4		CCS-01	36,23	1,00%	1,6	1,6	21,50			3,23	18,27
	TOTAL:	0	8,4	61,30					TOTAL:	178,43		-	TOTAL:	136,22
					ESCAVAÇÂ	ÃO DRENO -	INCLUIDO	NA CPU		-				-
						ESCAVA	AÇÃO BOO	AS LOBO		-				-
							EC.	AVACÃO		170 12			DEATERRO	126.22

ESC 0

TRANSPOSIÇÃO DE SEGMENTO DE SARJETA TSS-02

LOCAL	KM	LADO	EXTENSÃO
RLE	1+550	LD	31,000
RLE	2+040	LD	28,000
SOMA	7		59,000

Projeto de Acesso DISTRITO INDUSTRIAL Revisão 01 01/11/2022

TRANSPORTE CAMINHÃO CARROCERIA 20T COM GUINDAUTO

SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO	1
BUEIROS D=40	0	0,2168	0	6,5	0	
BUEIROS D=60	8,4	0,4273	3,589	6,5	23,328	
BUEIROS D=80	61,30	0,708	43,4	6,5	282,1	
				TOTAL	305,43	

TRANSPORTE CAMINHÃO CARROCERIA 9T RODOVIA PAVIMENTADA

SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO
MEIO FIO	-	0,09	0	6,5	0
GRAMA	1.860,000	0,0364	67,704	6,5	440,08
BLOCOS PARA BOCA DE LOBO	-	2,84		6,5	0
		- 4		TOTAL	440,08

TRANSPORTE CAMINHÃO BASCULANTE 6M3

SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO
PEDRA P/ ENROCAMENTO	0,00	1,65	0,00	44,5	0
PEDRA P/DRENO	0,00	1,65	0,00	44,5	0
SOLO DA ESCAVAÇÃO	42,21	1,50	63,31	44,5	2817,4
CONCRETO P/ DISSIPADOR	0,00	2,50	0,00	44,5	0
CONCRETO P/ BOCA DE BUEIRO 40	0,42	2,50	1,06	44,5	47,059
CONCRETO P/ BOCA DE BUEIRO 60	0,52	2,50	1,31	_ 44,5	58,184
CONCRETO P/ BOCA DE BUEIRO 80	0,62	2,50	1,55	44,5	68,864
CONCRETO P/ CCS	13,75	2,50	34,38	44,5	1529,9
ARGAMASSA PARA BOCA DE LOBO	0,00	0,09	0,00	44,5	0
CONCRETO STC	395,00	0,25	99,74	44,5	4438,3
				TOTAL	8959,8

10 – PROJETO DE SINALIZAÇÃO

10 - PROJETO DE SINALIZAÇÃO

O projeto de Adequação de Acessos no Distrito Industrial de Rio Pardo junto a BR-471 – km 178, segue a Instrução de Serviço n° 04, de 12/02/2016, através do Manual do Programa Nacional de Segurança e Sinalização Rodoviária - BR-Legal e Lei n° 9.503, de 23 de setembro de 1997, que instituiu o Código de Trânsito Brasileiro conforme Decreto n° 4.711, de 29 de maio de 2003.

O projeto segue a versão atualizada do ANEXO II do CTB, conforme Resolução n°160, de 22 de abril 2004, CONTRAN:

- Volume I do Manual Brasileiro de Sinalização de Trânsito aprovado pela Resolução nº 180, de 26 agosto 2005, referente à Sinalização Vertical de Regulamentação.
- Volume II do Manual Brasileiro de Sinalização, aprovado pela Resolução nº 243, de 22 de junho de 2007, referente à Sinalização Vertical de Advertência, e revoga Resolução 599/82, Cap. IV - Vol. II S. Vertical de Advertência - Parte I.
- Volume III do Manual Brasileiro de Sinalização de Trânsito, aprovado pela Resolução nº 486, de 07 de maio de 2014, referente à Sinalização Vertical de Indicação.
- Volume IV do Manual Brasileiro de Sinalização de Trânsito aprovado pela Resolução n° 236, de 11 de maio de 2007, referente à Sinalização Horizontal. Revoga ao Anexo da resolução n°666/86, Parte II – Marcas Viárias. Deverão ser seguidos e aplicados no desenvolvimento do Projeto de Sinalização e, no que couber, após implantação deste.

Em particular, a sinalização proposta busca se integrar à concepção proveniente do projeto geométrico.

10.1 – Sinalização Vertical

A sinalização vertical refere-se sinalização viária com a aplicação de placas em pontos laterais sobre a rodovia e, quando necessário, nos canteiros centrais. A

codificação das placas apresentadas no projeto seguiu o regulamento do Código de Trânsito Brasileiro, Anexo I – Sinalização, e das Resoluções 180/2005 e 243/2007 do CONTRAN, bem como normativas do Manual do Programa Nacional de Segurança e Sinalização Rodoviária - BR-Legal.

A velocidade a ser empregada na rodovia BR-471, nas aproximações das interseções, será reduzida de 100 km/h para 80 km/h e, finalmente para 60 km/h, em razão do grande fluxo de veículos e caminhões previstos para estes locais.

Na via lateral a velocidade a ser utilizada deverá ser de 40 km/h.

- Chapas

As chapas serão planas de aço zincadas nº 16 em conformidade com a norma ABNT NBR 11904 - Placas de aço zincado para sinalização viária. O verso das chapas será revestido com pintura eletrostática a pó (poliéster) ou tinta esmalte sintético sem brilho na cor preta de secagem a 140° C.

- Suporte para fixação

Deverão apresentar seção em perfil "C", comprimento variável de acordo com as características do terreno. Os suportes devem ser confeccionados com aço carbono, galvanizado por imersão a quente.

- Películas

Na refletividade das placas serão utilizadas películas refletivas do Tipo III/IV.

Para procedimento relativo à avaliação da retrorrefletividade e a especificação do retrorrefletômetro será obedecido a ABNT NBR 15426 - Sinalização Vertical Viária - Método de medição da retrorrefletividade utilizando retrorrefletômetro portátil.

Quando for detectado o fim da vida útil dos materiais, atingindo valores inferiores de retrorreflexão aos especificados na norma ABNT NBR 15426 - Sinalização Vertical Viária — Método de medição da retrorrefletividade utilizando retrorrefletômetro portátil, ou, a sinalização aplicada apresentar qualquer tipo de patologia, esta deverá ser substituída considerando os padrões estabelecidos inicialmente.

10.2 – Sinalização Horizontal

De acordo com o Manual Brasileiro de Sinalização de Trânsito – VOLUME IV – Sinalização Horizontal – Resolução N° 236/2007 – CONTRAN toda sinalização horizontal deverá ser retrorrefletiva, e, portanto, para a escolha dos materiais a serem utilizados, deverão ser considerados os seguintes fatores:

- Geometria da via;
- Composição do tráfego;
- Volume Médio Diário VMD;
- Largura da faixa de rolamento;
- Tipo e estado de conservação do pavimento;
- Tipo de demarcação;
- Vida útil esperada

10.2.1 Geometria da via

10.2.1.1 Planimetria

Trata-se de região plana com raios de giro amplos. No tocante ao projeto, o raio horizontal da BR-471, km 179 é 750m - circular.

10.2.1.2 Altimetria

Composto por rampas suaves, menores que 3%, sendo as ascendentes com 2,78% e as descendente com 2,50%.

10.2.2 Composição do tráfego

A circulação de veículos é distribuída na proporção de 58% veículos leves e automóveis, 42% caminhões e ônibus.

10.2.3 Volume médio diário

Para a sinalização foram utilizados os dados disponíveis no site do DNIT, sendo que para a BR-471 o VMD é de 1917 veículos por dia.

FONTE : PNCT 2020 - PNV 471BRS0070												
CONTAGEM VOLUMÉTRICA CLASSIFICATÓRIA		Ônibus e Caminhão de 2 eixos	Ônibus e Caminhão de 3 eixos	Caminhão de 4 eixos	Caminhão de 5 eixos	Caminhão de 6 eixos	Caminhão de 7 eixos	Caminhão de 8 eixos	Caminhão de 9 eixos	Veículo de Passeio	Moto	
471	RS											
471	RS											
471	RS	471BRS0070	259,51	155,20	91,15	53,29	124,88	83,54	15,90	17,98	1083,06	32,33
471	RS											
471	RS											
471	RS	471BRS0070	231,92	138,70	81,46	47,63	111,60	74,66	14,21	16,07	1076,34	32,13
471	RS	MÉDIA	245,71	146,95	86,31	50,46	118,24	79,10	15,06	17,03	1079,70	32,23
471	RS	DESVIO	13,79	8,25	4,85	2,83	6,64	4,44	0,85	0,96	3,36	0,10
	MEDIA + DP		259,51	155,20	91,15	53,29	124,88	83,54	15,90	17,98	1083,06	32,33
VEÍCULOS LEVES											58	3,19%
CAMINHÕES E ÔNIBUS 26,39%												
REBOQUES E SEMI REBOQUES								15,42%				
	471 471 471 471 471 471 471 471 471 471	## VOLUMÉTRICA CLASSIFICA ## 471	## VOLUMÉTRICA CLASSIFICATÓRIA ## 471	## VOLUMÉTRICA CLASSIFICATÓRIA ### 1	## VOLUMÉTRICA CLASSIFICATÓRIA ### P	## VOLUMÉTRICA CLASSIFICATÓRIA ### VOLUMÉTRICA CLASSIFICATÓRIA #	## VOLUMÉTRICA CLASSIFICATÓRIA ### VOLUMÉTRICA CLASSIFICATÓRIA ### PO 50	## VOLUMÉTRICA CLASSIFICATÓRIA 1	## VOLUMÉTRICA CLASSIFICATÓRIA ### PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES ### PROPERTIES PROPERTIES PROPERTIES PROPERTIES ### PROPERTIES PROPERTIES PROPERTIES ### PROPERTIE	## VOLUMÉTRICA CLASSIFICATÓRIA ### PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES ### VOLUMÉTRICA CLASSIFICATÓRIA ### PROPERTIES PROPERTIES PROPERTIES PROPERTIES PROPERTIES ### PROPERTIES PROPERTIES PROPERTIES PROPERTIES ### PROPERTIES PROPERTIES ### PROPERTIES PROPERTIES PROPERTIES ### PROPERTIS ### PROPERTIES ### PROPERTIES ### PROPERTIES ### PR	## VOLUMÉTRICA CLASSIFICATÓRIA \$\frac{7}{9} \frac{9}{9} \frac{7}{9} \frac{9}{9} \frac{9}{9} \frac{7}{9} \frac{9}{9} \frac{7}{9} \frac{9}{9} \frac{9}{9} \frac{7}{9} \frac{9}{9} 9	## VOLUMÉTRICA CLASSIFICATÓRIA \$\frac{7}{9} \frac{7}{9} 7

10.2.4 - Tipo de Material

O volume médio diário anual de tráfego (VDMa) e a composição dos veículos da frota para o segmento considerado determinam a escolha do material a ser empregado. Para o segmento em questão o Volume Médio Diário é de 1917 veículos por dia. Porém, para o projeto das interseções junto a BR-471, foram adotados os parâmetros do BR-Legal para VDMa até 5000 veículos, devendo o material a ser empregado atender a EM-276/2000 - Tinta para sinalização horizontal rodoviária à base de resina acrílica emulsionada em água, com espessura de 0,5 mm e garantia de 24 meses. O tipo de material fica condicionado aos valores mínimos de retrorrefletividade inicial e residual.

10.2.4.1 - Retrorrefletividade Inicial e Residual

A retrorrefletividade inicial é definida na ABNT NBR 14723 – Sinalização horizontal viária – Avaliação da retrorrefletividade como sendo o valor da retrorrefletividade da demarcação avaliada até 15 dias após a aplicação na via, enquanto a retrorrefletividade residual é definida como sendo o valor da retrorrefletividade avaliada após um determinado período de tempo.

A retrorrefletividade inicial mínima estabelecida para o Programa BR-LEGAL é de 250 mcd.lx-1.m2 para a cor branca e de 150 mcd.lx-1.m-2 para a cor amarela, verificada no campo para sinalização definitiva.

A retrorrefletividade residual estabelecida no Programa BR-LEGAL, sob quaisquer circunstâncias de condições físicas ou operacionais da rodovia, independente do material especificado no projeto será de 100 mcd.lx-1.m-2 para a cor branca e de 80 mcd.lx-1.m-2 para a cor amarela.

Quando for detectado o fim da vida útil dos materiais atingindo os valores estabelecidos para a retrorrefletividade residual ou a sinalização aplicada apresentar qualquer tipo de patologia, esta será refeita considerando-se os padrões estabelecidos inicialmente.

10.2.5 - Pinturas

A sinalização horizontal refere-se a sinalização viária composta de linhas de canalização de fluxo, marcas, símbolos e legendas, devendo satisfazer ao Manual Brasileiro de Sinalização de Trânsito - Volume IV - Sinalização Horizontal - Resolução N° 236/2007 — CONTRAN, Manual do Programa Nacional de Segurança e Sinalização Rodoviária - BR-Legal e NBR-7396/1987 — "Materiais para Sinalização Horizontal".

10.2.5.1 - Pintura Amarela

A cor amarela deverá ser utilizada no eixo das vias em linhas simples contínuas de divisão de fluxos opostos (LFO-1) e linhas duplas contínuas de divisão de fluxos opostos (LFO-3), além das linhas de canalização (LCA), regularizando os fluxos de veículos.

10.2.5.2 - Pintura Branca

A cor branca deve ser utilizada nas linhas que delimitam a pista de rolamento: linhas de bordo (LBO) e, também, para regulamentar movimento sobre a pista tais como, linhas de divisão de fluxos de mesmo sentido (LMS) tracejadas ou contínuas, linhas de continuidade (LCO), linhas de canalização (LCA), setas, símbolos, legendas e faixas de travessias de pedestres, além da pintura de meios-fios.

Os posicionamentos, comprimentos, e cadências deverão obedecer às diretrizes da Resolução 236/2007 do CONTRAN. Assim, fica estipulado cadência de 2m x 2m para

70

as linhas de continuidade (LCO) e cadência de 1m x 1m nas paradas de ônibus e acessos particulares.

- Marcas Transversais:

Linhas de Retenção: largura de 0,40 m;

- Marcas Longitudinais:

Linhas de Borda L=0,15 m;

Linhas de continuidade e eixo L=0,15 m;

Linhas de continuidade tracejadas 2,00m x 2,00m; 1,00m x 1,00m; L=0,15 m;

A marcação de zebrados deverão ser espaçadas em 1,20 m, conforme definição da Resolução 236/2007 – CONTRAN, com largura de linha de 0,40 m para relação 1:3.

10.2.6 Materiais para sinalização por Condução ótica

Os materiais dos elementos de sinalização por condução ótica deverão satisfazer as normas da ABNT, no que se refere a resistência dos elementos e dimensões mínimas, conforme indicado nas respectivas Normas da ABNT, abaixo relacionadas:

- NBR-14636 - Tachas Refletivas Viárias - Requisitos(dez/00);

Tachas

São delineadores constituído de superfície refletoras aplicadas a suportes com dimensões de 97 x 100mm, fixadas ao pavimento através colas apropriadas, do tipo Epoxi. Devem ser posicionadas a 10 cm das linhas LBO e LMS.

Cores

As tachas serão em cores coerentes com a da linha a que se está conjugando, e terão seus refletores nas seguintes cores:

Linhas de borda: refletores brancos e vermelhos.

Linhas do eixo: refletores amarelos.

Linhas de continuidade: refletores brancos.

Cadências (Eixo, borda e Linha de Continuidade):

Linhas do eixo: tachas bidirecionais de 4,00 x 4,00 m.

Linhas de borda: tachas bidirecionais de 8,00 x 8,00 m.

Linhas de continuidade: tachas monodirecionais de 8,00 x 8,00 m

LMS-1 e hachurados: Tachas Monodirecionais de 2,00 x 2,00 m.

Balizadores Metálicos

Os balizadores metálicos são dispositivos refletorizados instalados fora da superfície pavimentada que têm por finalidade melhorar as condições de visibilidade, principalmente à noite, dando melhores condições de percepção do alinhamento da rodovia.

Serão empregados balizadores refletivos bidirecionais na cor branca, com película refletiva de 70 x 120 mm, dispondo de duas faces refletoras separadas de 136° entre seus eixos de simetria, nas cores amarelo e vermelho.

Foram indicados balizadores metálicos nos canteiros das interseções da BR-471, na cadência de 10,00m em 10,00m.

11 – PROJETO DE OBRAS COMPLEMENTARES E CANTEIRO

11.1 - Enleivamento

Com a finalidade de proteção contra erosão, foram projetados enleivamento em:

- Taludes de Aterros e Cortes;
- Canteiro das ilhas das interseções.

11.1.1 - Enleivamento nas Interseções

Leivas Ramo A: 1023,04

Leivas Ramo B: 729,20

Leivas Ramo C: 456,88

Leivas Ramo D: 353,86

Leivas Ramo E: 76,20

Leivas Ramo F: 112,26

Leivas Ramo G: 66,39

Leivas Ramo H: 66,76

Leivas Ramo BR: 480,00

Leivas Canteiros: 2330,00

11.1.2 - Enleivamento na Rua Lateral

Leivas Rua Lateral: 4.268,80

11.2 - Demolição de Alvenarias

Para a implantação da Interseção do Passo do Adão será necessário suprimir alvenarias existentes da parada de ônibus existente, com volume calculado de 9,45m³.

DEMOLIÇÃO DE ALVENARIAS SIMPLES	PAREDE	LARGURA	COMPRIM.	ALTURA	VOLUME
RAMO A KM 0+160	0,15	3	5,00	2,10	4,725
RAMO B KM 0+045	0,15	3	5,00	2,10	4,725
				TOTAL:	9,45

11.3 - Defensas Metálicas

Dois segmentos com aterros altos e um em curva necessitam de proteção, indicou-se em projeto a aplicação de defensas semi maleáveis simples.

DEFENSA	SEMI MA	ALEÁVEL SIMPLES	FUNÇÃO	DEFENSA	ANCORAGEN
0+000	0+137	RAMO A LD	ATERRO ALTO	112,00	32,00
0+120	0+240	RAMO B LD	ATERRO ALTO	88,00	32,00
0+052	0+130	RAMO D LD	CURVA FORTE	48,00	32,00
		TOTAL:		248,00	96,00

11.4 – Supressão arbóreas 15<d<30

Ocorre entre o km 1+485 e o km 1+520 um plantio de 15 unidades de pinheiros Pinus Eliotis, com diâmetro entre 15 e 30 cm que necessitam ser suprimidos.

	SUPRES	SSÃO ARBÓR	EA 15 <d <<="" td=""><td>:30</td><td></td></d>	:30	
KM	LADO	QUANTID.	TIPO	ESPÉCIE	
	BR-471				
1+485	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+485	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+485	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+490	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+490	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+500	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+500	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+505	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+505	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+510	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+510	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+515	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+515	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+520	LE	1,00	EXÓTICA	PINUS ELIOTIS	
1+520	LE	1,00	EXÓTICA	PINUS ELIOTIS	
					15,00

11.5 – Transportes

Para transportar os materiais necessários à execução das obras complementares foram quantificados os volumes, pesos e momentos de transportes para o serviço.

Transporte para execução da RLE

TRANSPORTE CAMINHÃO CARROCERIA 9T RODOVIA PAVIMENTADA

250,400		2522111154212	2500 5050		
SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO
ENLEIVAMENTO	4269,80	0,023	98,2054		6,5 638,3351
LENHA	15,00	0,1	1,5		6,5 9,75
CONCRETO FCK 25MPa	3,50	2,5	8,75		6,5 56,875
ALVENARIA DE TIJOLOS	17,80	1,6	28,48		6,5 185,12
ARGAMASSA CIMENTO/AREIA TRA	0,88	2,5	2,2		6,5 14,3
TELHA DE FIBROCIMENTO 6MM	14,06	0,02	0,2812		6,5 1,8278
AÇO CA-50 FORNECIMENTO CORTE	233,18	0,001	0,233178		6,5 1,515657
PONTALETE DE MADEIRA PARA O T	20,00	0,02	0,4		6,5 2,6
PREGO TELHEIRO	24,00	0,001	0,024		6,5 0,156
FORMA COMUM DE MADEIRA	36,20	0,02	0,724		6,5 4,706
				TOTAL	915,1856
					,

Transporte para execução das Interseções

TRANSPORTE CAMINHÃO CARROCERIA 15T RODOVIA PAVIMENTADA

SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO
DEFENSA	344,00	0,01936	6,65984		150 998,976
ENLEIVAMENTO	6530,59	0,023	150,20357		6,5 976,3232
1					
				TOTAL	1975,299

TRANSPORTE CAMINHÃO BASCULANTE 10M3

SERVIÇO	QUANTIDADE	PESO UNITARIO	PESO TOTAL	DMT	MOMENTO
DEMOLIÇÃO ALVENARIA	9,45	2	18,9		6,5 122,85
				TOTAL	122,85

11.6 – Abrigo de ônibus

Para substituir os dois abrigos existentes serão necessários a implantação de novos abrigos na área das paradas de ônibus, constituídos nas mesmas características dos abrigos existentes, em alvenaria com cobertura de telas.

As quantidades para a sua execução são pormenorizadas a seguir.

A planta com o detalhamento executivo do abrigo encontra-se no Volume 2, folha OC03/05.

CONCRETO FCK 25MPa	LADO	UNIDADES	QUANTIDADE UNIT.	TOTAL
ABRIGO DE ÔNIBUS	DIREITO	1	1,75	1,75
ABRIGO DE ÔNIBUS	ESQUERDO	1	1,75	1,75

TOTAL: 3,5 M³

ALVENARIA DE TIJOLOS	LADO	ÁREA	TOTAL	
ABRIGO DE ÔNIBUS	DIREITO	8,9		8,9
ABRIGO DE ÔNIBUS	ESQUERDO	8,9		8,9

TOTAL: 17,8 M²

ARGAMASSA CIMENTO/AREIA TRAÇO 1:4 - MASSA ÚNICA

ARGAMASSA TRAÇO 1:4	LADO	VOLUME PARCIAL	TOTAL		ESPESSURA	ÁREA
ABRIGO DE ÔNIBUS	DIREITO	0,44		0,44	0,02	22,00
ABRIGO DE ÔNIBUS	ESQUERDO	0,44		0,44	0,02	22,00

TOTAL: 0,88 M³ 44 M²

TELHA DE FIBROCIMENTO 6MM

TELHA DE FIBROCIMENTO	LADO	ÁREA	TOTAL
TELHAS 6MM ONDULADA	DIREITO	7,03	7,03
TELHAS 6MM ONDULADA	ESQUERDO	7,03	7,03

TOTAL: 14,06 M²

AÇO CA-50 FORNECIMENTO CORTE E DOBRA E COLOCAÇÃO EM FORMA

FERRAGEM PARA AS VIGAS	COMP.	PESO UNI	QUANT.	PESO	2X
DIÂMETRO 4,2MM	0,78	0,2	110,00	17,16	34,32
DIÂMETRO 4,2MM	0,5	0,2	46,00	4,6	9,2
DIÂMETRO 10MM	3,16	0,62	16,00	31,3472	62,6944
DIÂMETRO 10MM	2,16	0,62	16,00	21,4272	42,8544
DIÂMETRO 10MM	2,41	0,62	8,00	11,9536	23,9072
DIÂMETRO 10MM	2,16	0,62	8,00	10,7136	21,4272
DIÂMETRO 10MM	3,2	0,62	6,00	11,904	23,808
DIÂMETRO 10MM	0,71	0,62	17,00	7,4834	14,9668

TOTAL: 233,178 KG

PONTALETE DE MADEIRA PARA O TELHADO (10X10)

TELHA DE FIBROCIMENTO	LADO	EXTENSÃO	TOTAL	DIMENSÕES
ABRIGO DE ÔNIBUS	DIREITO	10	10	0,1X0,1
ABRIGO DE ÔNIBUS	ESQUERDO	10	10	0,1X0,1

TOTAL: 20 M

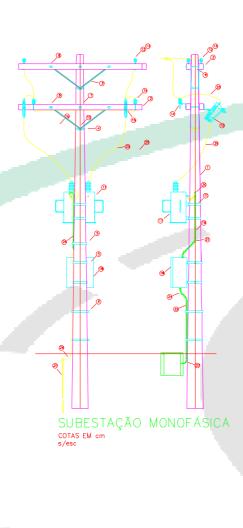
PREGO TELHEIRO

FORNECIMENTO E APLICAÇ	LADO	EXTENSÃO	TOTAL
ABRIGO DE ÔNIBUS	DIREITO	12	12
ABRIGO DE ÔNIBUS	ESQUERDO	12	12

TOTAL: 24 UND

FORMA COMUM DE MADEIRA TÁBUA DE PINUS - UTILIZAÇÃO 2X

FORNECIMENTO E APLICAÇ	LADO	EX	TENSÃO	TO	TAL	Z	ÁREA	
TÁBUA 15CM - FUNDAÇÃO	DIREITO		20			20		3
TÁBUA 25CM - CINTA	DIREITO		30			30		7,5
TÁBUA 20CM - PILARES	DIREITO		38			38		7,6
TÁBUA 15CM - FUNDAÇÃO	ESQUERDO		20			20		3
TÁBUA 25CM - CINTA	ESQUERDO		30			30		7,5
TÁBUA 20CM - PILARES	ESQUERDO		38			38		7,6
			TOTAL	L:				36.2 M

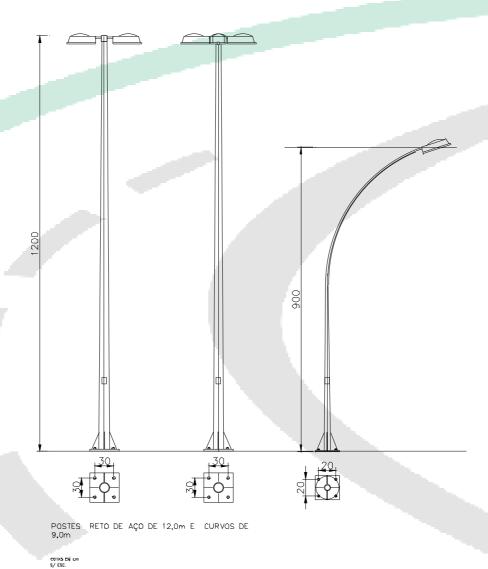

12 – ILUMINAÇÃO

O segmento em projeto não apresenta fluxo de pedestre noturno, ainda assim é recomendada a aplicação de iluminação para agregar segurança adicional as interseções.

Duas redes demandam ser apresentadas, uma junto ao Passo do Adão e uma junto à interseção Sul, com extensão total de 398,67m.

KEDES																		
LOCAL	LUMINÁRIAS	POST	ES	LAME	VOLT	NOMIN	DEMANDA	CORRENTE	DISJ	CIRCUITO	ELTRODUTO	CONDUTO	CORREÇÃO	CORREMTE	ÁREA	COMPRIMENTO	COMPRIMENTO	COMPRIMENTO
		9m	12m	1			1	(A)				CURCUITOS		CORRIGIDA	FIO	CANANETE	NO CONDUTO	NO POSTE
BR-471	8	1	3	400	380	3200	4000	10,53	15	C1	AÉREO	-	0,65	16,19	10	-	-	49,35
																		49,24
																		28,28
																		3,74
BR-471	7	8	C	400	380	2800	3500	9,21	10	C2	AÉREO	-	0,65	14,17	10	-	-	40
																		40
																		38,87
																		40,4
																		39,65
																		43,87
																		22
																		3,27
•	15	9	3				•									0	0	398,67

Duas bases de transformadores deverão ser implantadas junto a rede existente nas adjacentes ao trecho.



Projeto de Acesso DISTRITO INDUSTRIAL Revisão 01 01/11/2022

ITEM	DECCDICÃO	Qd	
	DESCRIÇÃO -	1Ø	3ø
1	POSTE DE CONRETO CIRCULAR 10m -300daN	1	1
2	CRUZETA DE MADEIRA DE LEI 2,00m	4	4
3	MÄO FRANCESA	8	8
4	CINTA PARA POSTE CIRCULAR DE AÇO GALVANIZADO 10 200mm	4	4
5	CINTA PARA POSTE CIRCULAR DE AÇO GALVANIZADO 10 240mm	2	2
6	CINTA PARA POSTE CIRCULAR DE AÇO GALVANIZADO Ø 260mm	2	2
7	SELA PARA CRUZETA	4	4
8	PARAFUSO CABEÇA BOLEADA 16mmX15Dmm	12	12
9	PARAFUSO DE ROSCA DUPLA Ø 16mmX500mm COM 4 POSCAS	4	4
1 D	PARAFUSO DE CABEÇA QUADRADA 🕫 16mmX 50mm, COM PORCA E ARF	UELA	4
11	SUPORTE PARA TRANSFORMADOR	2	2
12	ISOLADOR DE PINO SISTEMA DE 25 kV	6	4
13	PINO PARA ISOLADOR , ROSCA DE CHUMBO , COM BATENTE	6	4
14	PÁRA~RAID MONOPOLAR ,NÃO LINEAR ,POLIMÉRICO, 21kV-5 kA, COM S	URZORT	E 2
15	CHAVE FUSIVEL MONOPOLAR 25kV-300A C/ELOS E FERRACEM DE FIXAÇ	Ad	1
16	TRANSFORMADOR TRIFÁSICO , 25 000/380-22DV-IMERSO EM ÓLEO	1	-
17	TRANSFORMADOR MONOFÁSICO , 25 000/230-115V-IMERSO EM ÓLEO	-	1
18	QUADRO DE COMANDO DA ILUMINAÇÃO	1	1
19	ELETRODUTO DE AÇO GALVANIZADO Ø 2" X 3,0m	1	1
2D	CURVA 180° ØAÇD GALVANIZADO Ø 2°, COM 2 LUVAS	1	1
21	CURVA 45° ¢AÇO GALVANIZADO ¢ 2°, COM 2 LUVAS	3	3
22	ELETRODUTO DE AÇO GALVANIZADO Ø 3" X 3,0m	1	1
23	CURVA 90° ØAÇO GALVANIZADO Ø 3", COM 2 LUVAS	1	1
24	CURVA 45° ØAÇO GALVANIZADO Ø 3", COM 2 LUVAS	2	2
25	FIO DE COBRE NU , TEMPERA DURO, SEÇÃO 16mm² (m)	20	20
26	CABO DE COBRE NU , TEMPERA MEIO DURO, SEÇÃO 25mm² (m)	20	20
27	HASTE DE TERRA Ø ¾ X 3,00m COM CONECTOR>	1	-1_

NOTA: TODOS OS MATERIAIS E EQUIPAMENTOS DEVERÃO ESTAR DE ACORDO COM AS NORMAS E RECOMENDAÇÕES DA CEEE-RS

Postes aplicados.

13 - PAISAGISMO

O segmento em projeto necessitará de revestimento vegetal, neste projeto está se indicando o enleivamento.

O enleivamento consiste no plantio direto de grama em placas, nos taludes de aterros previamente preparados, bem como nas áreas destinadas a reconformação paisagística, utilizando-se para tal as espécies existentes no mercado na época da execução, dando-se preferência para misturas de espécies, como por exemplo, "grama de campo".

O serviço foi quantificado nas Obras Complementares.

14 - QUADRO DE QUANTIDADES E CUSTOS

14 - QUADRO DE QUANTIDADES E CUSTOS

Para estimar os custos de implantação das interseções e a Rua Lateral, foram utilizadas as composições do SICRO, com data base de Janeiro/2022.

Os BDIs estimados para definir os valores necessários ao projeto foi de 27% para obras gerais, e 15,5% para os materiais asfálticos.

QUADRO DE QUANTIDADES E CUSTOS - DISTRITO INDUSTRIAL Base SICRO JANEIRO-22 BDI ASFALTOS: 15.5% BDI 27.0% ITEM DESCRIÇÃO DO SERVIÇO UNID QUANTIDADE CÓDIGO SICRO PREÇO UNITÁRIO CUSTO BDI CUSTO OBRA TERRAPLENAGEN 1.1 TERRAPLENAGEM - INTERSEÇÕES LIMPEZA DA CAMADA VEGETAL D<15CM 11.253,44 6.414,46 1.1.1 M² 5501700 0,45 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT. DMT >50 <200M 2.109,57 4,85 12.994,95 5502109 1,31 M³ 1.1.3 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT. DMT >1200 <1400M 194,34 5502114 6,50 1,76 1.605,25 1.1.4 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ªCAT. DMT >1400 <1600N 532,78 5502116 7,24 1,95 4.896,25 1.153,09 1.1.5 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ªCAT. DMT >50 <200M 134.55 5502585 6.75 1,82 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ºCAT. DMT >400 <600M 1.1.6 342,39 5914389 0,67 0,18 291,03 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ªCAT. DMT >1400 <1600M 256,69 5502638 6,63 1,79 2.161,30 22.367,00 1.1.8 COMPACTAÇÃO A 100% DO PN 4.473,40 5502978 3,94 1,06 1.1.9 COMPACTAÇÃO A 100% DO PI 2.602.71 5503041 6.70 1.81 22.149.06 1.1.10 ESCAVAÇÃO DE MATERIAL DE JAZIDA 5.628,63 4016096 1,24 0,33 8.836,94 1.1.11 TRANSPORTE COM CAMINHÃO BASCULANTE DE 10M³ - RODOVIA EM REVESTIMENTO PRIMÁRIO ТКМ 79.870,22 5914374 0,78 0,2 79.071,51 SUB-TOTAL TERRAPLENAGEM - INTERSEÇÕE 161.940,85 LIMPEZA DA CAMADA VEGETAL D<15CM 14.270,02 5501700 0,45 0,12 8.133,91 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT, DMT >50 <200M 1.2.2 1.325,90 5502109 4.85 8.167.52 1,31 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 1ºCAT. DMT >400 <600M 244,76 5,18 1.610,55 1.2.3 5502110 1,40 1.2.4 ESCAVAÇÃO CARGA E TRANSPORTE MATERIAL DE 2ªCAT. DMT >50 <200M 2.051,01 5502585 6,75 1,82 17.577,16 1.2.5 COMPACTAÇÃO A 100% DO PN M³ 1.019,92 5502978 3,94 1,06 5.099,60 1.2.6 COMPACTAÇÃO A 100% DO PI 1.577,70 5503041 6,70 1,81 13.426,23 1.2.7 ESPALHAMENTO E CONFORMAÇÃO DE BOTA FORA 244,76 4413984 0,84 3,11 SUB-TOTAL TERRAPLENAGEM - RUA LATERA 54.981,78 PAVIMENTAÇÃO 2.1 PAVIMENTAÇÃO - INTERSEÇÕES REGULARIZAÇÃO DO SUB-LEITO 9.967,00 4011209 0,92 11.661,39 2.1.1 0,25 2.1.2 SUB-BASE DE MACADAME SECO 2.623,40 4011279 136,92 36,97 456.183,03 BASE DE BRITA GRADUADA (15CM) 163,92 342.859,97 CONCRETO ASFALTICO COM ASFALTO POLIMERO - FAIXA B 2.1.4 2.521.88 4011461 160.63 43.37 514.462.50 2.1.5 IMPRIMAÇÃO 9.929,60 4011351 0,34 0,09 4.269,73 PINTURA DE LIGAÇÃO 2.1.6 20.175,00 4011353 0,25 6.456,00 0,07 FRESAGEM DESCONTÍNUA 2.1.7 12,00 4011479 49,02 13,24 747,12 2.1.8 RACHÃO/PEDRA DE MÃO 1.704.25 4816016 32.32 8.73 69.959.46 AQUISIÇÃO DE CAP MODIFICADO COM POLÍMERO 60-85 4980,00 689.014,71 2.1.9 119,79 M1955 771,90 AQUISIÇÃO DE RR-1C PARA PINTURA DE LIGAÇÃO M1946 3790,00 2.1.10 10,09 587,45 44.157,53 2.1.11 AQUISIÇÃO DE CM-30 PARA IMPRIMAÇÃO 11.92 M0104 5600.00 868.00 77.069.58 115,00 31,0 1.740,26 2.1.13 TRANSPORTE DE RR-10 10.09 M1946 115.00 31.0 1.473.28 2.1.14 TRANSPORTE DE CAP 119,79 M1955 41,04 23.124,08 152,00 2.1.15 TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO BASCULANTE 10M³ 701.718,99 5914389 0,63 0,17 561.375,19 SUB-TOTAL PAVIMENTAÇÃO - INTERSEÇÕES 2.804.553.83 2.2 PAVIMENTAÇÃO - RUA LATERAL - OPÇÃO 1 REGULARIZAÇÃO DO SUB-LEITO 11.550,00 4011209 0,92 13.513,50 2.2.1 0,25 ESCAVAÇÃO DE MATERIAL DE JAZIDA 4016096 0,33 TRANSPORTE COM CAMINHÃO BASCULANTE DE 10M³ - RODOVIA EM REVESTIMENTO PRIMÁRIO 2.2.3 TKM 54.085,19 5914374 0,78 0,21 53.544,33 COMPACTAÇÃO A 100% DO PI 32.435,87 3.811,50 5503041 2.2.4 6,70 1,81 2.2.5 BASE DE BRITA GRADUADA (15CM) M³ 1.678,50 4011276 163,92 349.430,13 2.2.6 TRATAMENTO SUPERFICIAL DUPLO COM EMULSAO 10.950.00 4011376 4.11 57.159,00 1,1: IMPRIMAÇÃO 2.2.7 4011351 0,34 11.190,00 0,09 4.811,70 AQUISIÇÃO DE RL-1 PARA TRATAMENTO 3790,00 95.866,16 2.2.8 21,90 M1946 587,45 2.2.9 AQUISIÇÃO DE CM-30 PARA IMPRIMAÇÃO 13.43 M0104 5600,00 868.00 86.852.30 2.2.10 TRANSPORTE DE CM-30 13,43 M0104 115,00 31,05 1.961,16 TRANSPORTE DE RL-1 2.2.11 21,90 M1946 115,00 31,05 3.198,50 TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO BASCULANTE 10M³ 201.191,18 160.952,94 2.2.12 5914389 0,63 0,17 SUB-TOTAL PAVIMENTAÇÃO - RUA LATERA 865.709,64 DRENAGEM - INTERSEÇÕES ESCAVAÇÃO MECÂNICA DE VALA EM MATERIAL DE 1º CAT 3.1.1 819,73 4805757 5,44 1,47 5.664,36 4815671 REATERRO E COPACTAÇÃO COM SOQUETE 12.845,67 3.1.2 664,55 15,22 4,11 MEIO FIO MFC-05 1.082,00 2003377 21,64 29.733,36 3.1.4 SARJETA TRIANGULAR DE CONCRETO STC-03 470,00 2003323 48,34 13,05 28.853,30 BOCA DE LOBO SIMPLES BLS-02 UND 927,37 3.1.5 9,00 2003620 250,39 10.599,84 3.1.6 CAIXA COLETORA DE SARJETA CCS-01 UND 2,00 2003477 3155,59 8.015,20 3.1.7 BOCA DE BUEIRO SIMPLES D=40 ESC 0 ALA RETA UND 1,00 804061 293,67 79,29 372,96 BOCA DE BUEIRO SIMPLES D=60 ESC 0 ALA RETA 3.1.8 UND 4,00 804081 595,25 160,72 3.023,88 210,35 DISSIPADOR DES-02 JND 3,00 2003443 801,42 DISSIPADOR DEB-03 3.1.10 UND 1.00 2003453 1157,01 312.39 1.469.40 CORPO DE BUEIRO SIMPLES TUBULAR DE CONCRETO D=40 CA-4 43.10 804019 277,52 74.93 15.190.60 3.1.11 М 3.1.12 CORPO DE BUEIRO SIMPLES TUBULAR DE CONCRETO D=60 CA-4 M 257.60 804027 462,89 124,98 151,435,31 3.1.13 DRENO SUB-SUPERFICIAL DSS-02 476.00 2003607 34.13 9.22 20.634.60 3.1.14 ENROCAMENTO DE PEDRA JOGADA 6,00 1505860 134,36 36,28 1.023,84 3.1.15 CONCRETO FCK 15MPA 9,31 357,48 4.227,65 1107888 96,52 TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO GUINDAUTO 20T 3.1.16 TKM 776.13 5914614 1.51 0.41 1.490.17 3.1.17 TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO BASCULANTE 10M ткм 22.837,54 5914389 18.270,03 0,63 0,17 3.1.18 TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO CARROCERIA 91 799,11 5914434 0,66 0,18 SUB-TOTAL DRENAGEM - INTERSEÇÃO 314.322,83 3.2 DRENAGEM - RUA LATERAL 3.2.1 ESCAVAÇÃO MECÂNICA DE VALA EM MATERIAL DE 1ª CAT 178,43 4805757 5,44 1,47 1.232,97 3.2.2 REATERRO E COPACTAÇÃO COM SOQUETE 136.22 4815671 15.22 4.11 2.633.20 3.2.3 SARJETA TRIANGULAR DE CONCRETO STC-03 М 395,00 2003323 48,34 13,05 24.249,05 CAIXA COLETORA DE SARJETA CCS-01 3155,59 UND 6,00 2003477 852,01 24.045,60 3.1.6 2003338 46,462,80 SARJETA TRIANGULAR DE GRAMA STG-01 1.860,00 19,67

7.258.68

5.777,18

5.128,52

47.623.97

771.59

1228,22

272,58

165,17

55,96

2857.75

4548,96

1009,55

611.73

207,27

UND

UND

UND

TKM

2.00

1,00

4,00

61.30

59,00

2003730

2003746

804101

804035

2003359

3.2.5

3.2.6

3.2.8

3.2.9

3.2.10

CAIXA COLETORA DE TALVEGUE CCT-02

CAIXA COLETORA DE TALVEGUE CCT-10

BOCA DE BUEIRO SIMPLES D=80 ESC 0 ALA RETA

TRANSPOSIÇÃO DE SEGMENTO DE SARJETAS TSS-02

CORPO DE BUEIRO SIMPLES TUBULAR DE CONCRETO D=80 CA-2

TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO GUINDAUTO 20T

Projeto de Acesso DISTRITO INDUSTRIAL Revisão 01 01/11/2022

QUADRO DE QUANTIDADES E CUSTOS - DISTRITO INDUSTRIAL

	Base SICRO JANEIRO-22			27,0%	BDI ASFALTOS:	15,5%	
ITEM	DESCRIÇÃO DO SERVIÇO	UNID			PREÇO UNITÁRIO		CUSTO OBRA
3.2.11	TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO BASCULANTE 10M³	TKM	8.959,76	5914389	0,63	0,17	7.167,81
3.2.12	TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO CARROCERIA 9T	TKM	440,08	5914434	0,66	0,18	369,66
	SUB-TOTAL DRENAGEM - RLE						188.066,43
4	OBRAS COMPLEMENTARES						
4.1	OBRAS COMPLEMENTARES - INTERSEÇÃO						
4.1.1	DEFENSA SEMI MALEÁVEL SIMPLES	М	248,00	3713604	442,75	119,54	139.447,92
4.1.2	ANCORAGEM DE DEFENSA	М	96,00	3713605	489,75	132,23	59.710,08
4.1.3	ENLEIVAMENTO	M ²	2.260,59	4413996	7,92	2,14	22.741,54
4.1.4	TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO BASCULANTE 10M³	TKM	1.975,30	5914389	0,63	0,17	1.580,24
4.1.5	TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO CARROCERIA 9T	TKM	122,85	2003746	0,66	0,18	103,19
	SUB-TOTAL OBRAS COMPLEMENTARES - INTERSEÇÃO			•			223.582,97
4.2	OBRAS COMPLEMENTARES - RUA LATERAL ESQUERDA	M ²	4 270 00	4412006	7.03	2.14	42.056.20
4.2.1	ENLEIVAMENTO DESTOCAMENTO DE ÁRVORES 15CM <d<30cm< td=""><td>UND</td><td>4.270,00</td><td>4413996</td><td>7,92 33,52</td><td>2,14</td><td>42.956,20</td></d<30cm<>	UND	4.270,00	4413996	7,92 33,52	2,14	42.956,20
4.2.2	TRANSPORTE LOCAL EM RODOVIA PAVIMENTADA CAMINHÃO BASCULANTE 10M³	TKM	15,00 915,19	5501701 5914389	0,63	9,05 0,17	638,55
4.2.4		M ³			421,67		732,15 1.874,32
4.2.5	CONCRETO FCK 25MPa ALVENARIA DE TIJOLOS	M ²	3,50 17,80	1107896	97,00	113,85	2.192,78
4.2.5	MASSA ÚNICA	M ²	44,00	909620 903789	26,60	26,19 7,18	1.486,32
4.2.7	TELHA DE FIBROCIMENTO 6MM	M ²	14,06	- 303763	85,00	22,95	1.517,78
4.2.8	FORNECIMENTO, CORTE, DOBRA E COLOCAÇÃO EM FORMA DE AÇO CA-50	KG	233,18	407819	13,91	3,76	4.120,26
4.2.9	MADEIRA EUCALIPTUS PARA TELHADO - PONTALETE 10CM	M ³	0,20	2108165	250,00	67,50	63,50
4.2.10	PREGO TELHEIRO	UNID.	24,00	-	3,00	0,81	91,44
4.2.11	FORMA COMUM DE MADEIRA TÁBUA DE PINUS - UTILIZAÇÃO 2X	M ²	36,20	3106120	89,20	24,08	4.100,74
	SUB-TOTAL OBRAS COMPLEMENTARES - RLE		50,20	3100120	03,20	2.700	59.774,03
5	ILUMINAÇÃO - INTERSEÇÃO			•			
5.1	UNIDADE TRANSFORMADORA TRIFÁSICA 25KV FORNECIMENTO E INSTALAÇÃO EM POSTE	und.	2,00	-	12800,00	3456,00	32.512,00
5.2	CAIXA DE COMANDO DE ILUMINAÇÃO 8 CIRCUÍTOS	und.	2,00	-	1280,00	345,60	3.251,20
5.3	POSTE DE CONCRETO CÔNICO 10M 300KN COM TRAVESSA E SUPORTE PARA TRANSFORMADOR	und.	2,00	-	5618,00	1516,86	14.269,72
5.4	HASTE DE ATERRAMENTO 3/4" 3M COMCONECTOR	und.	12,00	-	266,00	71,82	4.053,84
5.5	LUMINÁRIA 4 PÉTALAS	und.	1,00	-	1519,00	410,13	1.929,13
5.6	LUMINÁRIA 2 PÉTALAS	und.	2,00	-	788,00	212,76	2.001,52
5.7	LUMINÁRIA PARA POSTE CURVO	und.	7,00	-	332,00	89,64	2.951,48
5.8	POSTE RETO GALVANIZADO 12M	und.	3,00	-	5390,00	1455,30	20.535,90
5.9	POSTE CURVO GALVANIZADO 9M	und.	7,00	-	3280,00	885,60	29.159,20
5.10	LAMPADAS 400W VAPOR DE SÓDIO	und.	15,00	-	120,00	32,40	2.286,00
5.11	CABO DE COBRE ISOLADO 1KV DIÂMETRO DE 16mm	m	797,34	-	13,72	3,70	13.889,66
5.12	CABO DE AÇO - SUSTENTAÇÃO	m	398,67	-	6,88	1,86	3.484,38
5.13	CONDUTO AÇO GALVANIZADO 50mm	m	18,00	-	78,00	21,06	1.783,08
5.14	CURVA 45° AÇO GALVANIZADO 50mm	und.	4,00	-	65,00	17,55	330,20
5.15	CABO DE COBRE NU 25mm²	m	12,00	-	35,00	9,45	533,40
5.16	CABO DE COBRE NU 16mm²	m	10,00	-	15,10	4,08	191,80
5.17	PARA RAIO MONOPOLAR	und.	2,00	-	1590,00	429,30	4.038,60
5.18	CHAVE FUSÍVEL MONOPOLAR	und.	2,00	-	462,00	124,74	1.173,48
	SUB-TOTAL ILUMINAÇÃO - INTERSEÇÃO						138.374,59
	SINALIZAÇÃO						
7.1	SINALIZAÇÃO - INTERSEÇÕES	12		F04			
7.1.1	PINTURA DE FAIXA TINTA BASE ACRÍLICA 0,5MM 2 ANOS	M ²	38,25	5214001	13,84	3,74	672,43
7.1.2	PINTURA DE SETAS E ZEBRADOS TERMOPLASTICA 1,5MM	M ²	59,75	5214002	29,70	8,02	2.253,98
7.1.3	FORNECIMENTO DE PLACA TIPO III	M ²	112,62	5213418	430,43	116,22	61.563,72
7.1.4	FORNECIMENTO DE SUPORTE METÁLICO C COLUNA SIMPLES	und.	42,00	5213863	362,55	97,89	19.338,48
7.1.5	FORNECIMENTO DE SUPORTE METÁLICO C COLUNA DUPLA	und.	18,00	5213870	2.579,41	696,44	58.965,30
7.1.6	FORNECIMENTO E COLOCAÇÃO DE TACHA REFLETIVA MONODIRECIONAL	und.	232,00	5219627	36,92	9,97	10.878,48
7.1.7	FORNECIMENTO E COLOCAÇÃO DE TACHA REFLETIVA BIDIRECIONAL FORNECIMENTO E COLOCAÇÃO DE BALIZADOR BIDIRECIONAL	und.	663,00	5219619 5213368	36,92	9,97	31.088,07
7.1.8	2	und.	42,00		16,19	4,37	863,52 176,56
	REMOÇÃO DE PLACAS COLUNA SIMPLES REMOÇÃO DE PLACAS COLUNA DUPLA	und. und.	7,00	5213364 2X5213364	17,38 34,76	4,69 9,39	176,56 309,05
7.1.10	PINTURA DE MEIO FIO - CAIAÇÃO	una. M²	647,00	4915723	2,69	0,73	2.212,74
/.1.11	SUB-TOTAL SINALIZAÇÃO - INTERSEÇÕES	101	047,00	4313723	2,09	0,73	188.322,34
7.2	SINALIZAÇÃO - RUA LATERAL						100.344,34
7.2.1	PINTURA DE FAIXA TINTA BASE ACRÍLICA 0,5MM 2 ANOS	M ²	381,75	5214001	13,84	3,74	6.711,17
7.2.2	PINTURA DE SETAS E ZEBRADOS TERMOPLASTICA 1,5MM	M ²	15,25	5214001	29,70	8,02	575,28
7.2.3	FORNECIMENTO DE PLACA TIPO III	M ²	5,52	5213418	430,43	116,22	3.017,51
7.2.4	FORNECIMENTO DE PLACA TIPO III FORNECIMENTO DE SUPORTE METÁLICO C COLUNA SIMPLES	und.	8,00	5213418	362,55	97,89	3.683,52
7.2.6	FORNECIMENTO E COLOCAÇÃO DE TACHA REFLETIVA MONODIRECIONAL	und.	507,00	5219627	36,92	9,97	23.773,23
7.2.11	PINTURA DE MEIO FIO - CAIAÇÃO	M ²	20,00	4915723	2,69	0,73	68,40
	SUB-TOTAL SINALIZAÇÃO - RUA LATERAL		20,00		2,03	5,75	37.829,11
	7.0		•				

CUSTO DE EXECUÇÃO - INTERSEÇÃO:
CUSTO DE EXECUÇÃO - RUA LATERAL ESQUERDA:
CUSTO DE EXECUÇÃO TOTAL DO COMPLEXO INDUSTRIAL DE RIO PARDO:

3.831.097,41 1.206.360,98 5.037.458,39

15 - PLANO DE TRABALHO E CRONOGRAMA FÍSICO DE EXECUÇÃO

15.1.1 - Serviços a Executar

A implantação desta obra de arte especial envolve a execução dos seguintes serviços:

- · locação da obra;
- implantação de sinalização provisória de obra nas margens da BR-471;
- limpeza da camada vegetal;
- · escavações;
- execução de contenções;
- reaterro de contenções;
- execução da drenagem e obras de arte corrente;
- execução da camada de revestimento das pistas e acabamentos passagem inferior;
- implantação dos meios fios e demais drenagens superficiais;
- enchimento de canteiros e enleivamentos:
- sinalização e limpeza da área da obra.

15.1.2 Clima e Pluviometria

Os dados sobre pluviometria recomendam obras nos meses de outubro a março, devendo ser evitados serviços de terraplenagem e pavimentação nos meses de abril a setembro, dado que ocorrem longos períodos impraticáveis.

15.1.3 Apoio Logístico e Condições de Acesso

O suporte logístico básico para atender os trabalhos como oficinas mecânicas, mão de obra, revendas de equipamentos, peças, combustíveis e lubrificantes em geral, fornecedores de materiais diversos etc., podem ser obtidos diretamente na cidade de Rio Pardo.

Havendo a necessidade de materiais que não existam na região, poderão ser adquiridos na região metropolitana de Porto Alegre a cerca de 150 km de distância.

15.1.4 Condições do Acesso

As obras serão implantadas entre o km 178+700 e o km 180+200 da rodovia BR-471/RS, atualmente no local existe uma estrada municipal e diversos acessos sem regulamentações para as empresas instaladas nas margens da rodovia, as áreas adjacentes ao acesso apresentam fluxo de veículos devendo ser evitado o depósito de materiais dentro da faixa de domínio.

15.1.5 Situação do Atual Trabalho

15.1.5.1 Generalidades

A Rodovia BR-471/RS hoje tem as seguintes disposições.

- Pistas de Rolamento: 7,20 m (2 x 3,60 m);
- Acostamento Externos: 2,50m
- Declividade Transversal (Pista e Acostamento): 2,00%

O pavimento existente no trecho de implantação é recente e é composto por MBUQ com CAP modificado por polímero.

15.1.5.2 Ocorrência de Materiais de Construção

Na região central do Rio Grande do Sul, onde será realizada a obra, são encontradas as rochas graníticas e basálticas com materiais oriundos da sua decomposição.

15.2 ORGANIZAÇÃO E PRAZOS

15.2.2 Prazos e Cronograma Físico

O prazo para execução dos serviços é o constante no projeto executivo sendo previsto em 4 (quatro) meses.

O cronograma físico é apresentado a seguir e deverá ser corroborado ou alterado pela construtora, devendo no segundo caso passar pela aprovação da fiscalização de obras.

15.2.3 Relação Quantificada do Pessoal Técnico Necessário

FUNÇÃO	QUANTIDADE	PERÍODO NECESSÁRIO (semanas)
Engenheiro Supervisor	1	8
Encarregado Geral	1	8
Técnico em Segurança do Trabalho	1	8
Topógrafo	1	8

Demais profissionais deverão ser quantificados de acordo com a necessidade para atendimento aos prazos e etapas do serviço.

15.2.4 Esquema dos Canteiros de Obras e Localização das Instalações Industriais.

As instalações do canteiro de obras deverá possuir uma área mínima de 290,40 m² para atender de maneira satisfatória as atividades sendo esta área subdividida em instalações com suas metragens mínimas abaixo.

a) Escritório: 12,0 m²;

b) Laboratório: 6,00 m²;

c) Almoxarifado: 6,00 m²;

d) Sanitários: 2,00 m²;

e) Vestiários: 10,00 m²;

f) Refeitório: 15,00 m²;

g) Carpintaria: 15,00 m².

As instalações da contratada, poderão ser em container a ser depositados nas margens do acesso do Passo do Adão.

15.2.5 Plano de Ataque às Obras

15.2.5.1 Mobilização Inicial

A mobilização inicial compreende na locação da obra, implantação do canteiro de obras (área coberta e escritório) e mobilização do pessoal e equipamentos necessários para os trabalhos iniciais. Nesta fase deverão ser priorizadas as tarefas relativas à sinalização provisória da obra que devem atender o que se preceitua no Manual de Sinalização de Obras do DNIT, tendo em vista a execução dos trabalhos dentro da área de abrangência da faixa de domínio da rodovia que no local é de 40 (quarenta) metros para a direita e 20 (vinte) metros para a esquerda, contados a partir do eixo que divide os fluxos, neste caso materializado pelas faixas amarelas ou canteiro central quando houver.

Será de inteira e exclusiva responsabilidade da contratada, realizar os serviços de manutenção do tráfego contínuo e em perfeita segurança, no que diz respeito ao fluxo da BR-471, sendo que a interrupção da mesma não será permitida sob nenhuma hipótese. A sinalização deverá ser intensa e eficiente, tanto no período diurno quanto noturno, de modo a causar o mínimo de transtorno ao tráfego.

15.2.5.2 Limpeza da Camada Vegetal

Deverá ser realizada a remoção total dos tocos e raízes da camada de solo orgânico, na profundidade necessária até o nível do terreno considerado apto para terraplenagem das áreas destinadas à implantação da plataforma a ser construída de acordo com os boletins de sondagem do local e atendendo as cotas especificadas em projeto, objetivando a eliminação de camada nociva à estrutura do subleito, bem como dotar a superfície de adequadas condições operacionais para o trânsito dos equipamentos. Os volumes decorrentes da limpeza, solos orgânicos, deverão ser separados e aproveitados para fixação da laivas de grama.

15.2.5.3 Drenagem e Obras de Arte Corrente

Deverá ser realizada a implantação dos dispositivos de drenagem de acordo com as indicações do projeto executivo e conforme normatização vigente.

15.2.5.4 Obras Complementares

As obras complementares são aquelas elencadas no projeto executivo e deverão seguir as especificações ali descritas.

15.2.5.5 Terraplenagem e Pavimentação

Deve ser realizada a pavimentação com mistura betuminosa nas interseções e com tratamento superficial na Rua Lateral.

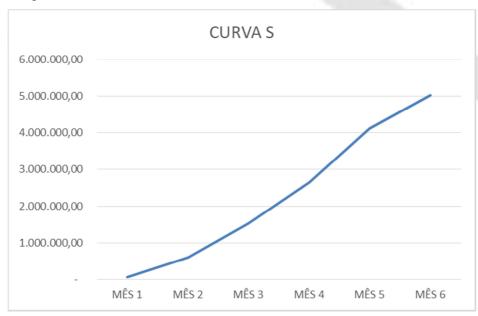
As dimensões de execução da capa de rolamento deveram seguir as medidas orientadas no projeto, mantendo o traçado geométrico apresentado no mesmo. As condições de acabamento serão avaliadas pela fiscalização responsável da obra. Todas as etapas de serviço deverão atender ao que preceitua as especificações de serviço DNIT para execução de:

- a) Execução de aterros;
- b) Regularização do sub-leito;
- c) Base em BGS;
- d) Imprimação;
- e) Pintura de ligação;
- f) CBUQ;

15.2.5.6 Sinalização e Segurança Viária

Deverá ser realizada a implantação da sinalização seguindo as definições do projeto executivo. A sinalização deve ser efetiva, assim tendo que estar corretamente posicionada quando vertical e pintada corretamente quando na horizontal.

15.2.5.7 Limpeza da Obra e Desmobilização


Por fim, deverá ser realizada a limpeza da área de intervenção, removendo resíduos provenientes da obra e se necessário fazendo seu descarte em locais apropriados, e a remoção da sinalização provisória.

15.2.6 Relação de Equipamentos Mínimos

Executante deve colocar na obra todo o equipamento necessário para a realização dos serviços, atendendo aos requisitos de qualidade e atendimento ao prazo de entrega da obra. A relação do equipamento a ser alocado deve ser ajustada às condições particulares vigentes e submetida, previamente, à apreciação da Fiscalização.

15.2.7 Desembolso e Recursos

A implantação plena da Rua Lateral e Interseções, demandará um desembolso de R\$ 5.037.458,39 empregados durante os quatro meses de obra. Conforme a curva S a seguir.

	_							I	
SERVIÇO			MÊS 1	MÊS 2	MÊS 3	MÊS 4	MÊS 5	MÊS 6	TOTAL
TERRAPLENAGEM INTERSEÇÕES	161.940,85	R\$	8.097,04	40.485,21	40.485,21	40.485,21	32.388,17	-	161.940,85
		%	5%	25%	25%	25%	20%	-	100%
TERRAPLENAGEM RUA LATERAL	54.981,78	R\$	2.749,09	13.745,44	13.745,44	13.745,44	10.996,36	-	54.981,78
		%	5%	25%	25%	25%	20%	-	100%
PAVIMENTAÇÃO INTERSEÇÕES	2.804.553,83	R\$	-	280.455,38	560.910,77	701.138,46	841.366,15	420.683,07	2.804.553,83
		%	-	10%	20%	25%	30%	15%	100%
PAVIMENTAÇÃO RUA LATERAL	865.709,64	R\$	-	86.570,96	173.141,93	216.427,41	259.712,89	129.856,45	865.709,64
		%	-	10%	20%	25%	30%	15%	100%
DRENAGEM INTERSEÇÕES	314.322,83	R\$	31.432,28	78.580,71	78.580,71	62.864,57	31.432,28	31.432,28	314.322,83
		%	10%	25%	25%	20%	10%	10%	100%
DRENAGEM RUA LATERAL	188.066,43	R\$	18.806,64	47.016,61	47.016,61	37.613,29	18.806,64	18.806,64	188.066,43
		%	10%	25%	25%	20%	10%	10%	100%
OBRAS COMPLEMENTARES INTERSEÇÕE	223.582,97	R\$	-/	-	-	44.716,59	100.612,34	78.254,04	223.582,97
		%		-	-	20%	45%	35%	100%
OBRAS COMPLEMENTARES RUA LATERA	59.774,03	R\$	/ -	-	-	11.954,81	26.898,31	20.920,91	59.774,03
		%		-	-	20%	45%	35%	100%
ILUMINAÇÃO - INTERSEÇÃO	138.374,59	R\$	-	-	-		138.374,59	-	138.374,59
		%	-	-	-	-	100%	-	100%
SINALIZAÇÃO INTERSEÇÕES	188.322,34	R\$	-	-	-	-	18.832,23	169.490,10	188.322,34
		%	-	-	-	-	10%	90%	100%
SINALIZAÇÃO RUA LATERAL	37.829,11	R\$	-	-	_	-	3.782,91	34.046,20	37.829,11
		%	-	-	-	-	10%	90%	100%
TOTAL	5.037.458,39	R\$	61.085,06	546.854,32	913.880,67	1.128.945,78	1.483.202,87	903.489,69	5.037.458,39
		%	1%	11%	18%	22%	29%	18%	100%

16 – NOTAS DE SERVIÇO DE PAVIMENTAÇÃO

Av. Bento Gonçalves nº 1294/202 - Bairro Partenom - Porto Alegre/RS Telefone: (51) 98528 1181 - Celular: (51) 98117 8044 – e-mail: galmarc.galmarc@gmail.com

NOTA DE SERVIÇO DE PAVIMENTAÇÃO DISTRITO INDUSTRIAL

$\overline{}$							17.12				
ESTACA	OFI	F-SET	BORDO	NTERNO	EIXO L	OCADO	BC	ORDO EXTERNO	כ	OFF-	SET
km	Cota	Distância	Cota	Distância	Cota Terrenc	Pavimento	Distância	SE%	Cota	Distância	Cota
RAMO A											
0+000			Paviment	o Existente	34,596	34,631	Pavimento Exi	stente			
0+020	34,770	0,980	34,769	0,96	34,699	34,750	2,500	-2,00%	34,700	4,130	33,560
0+040	34,960	3,400	34,961	3,40	34,392	34,859	2,500	-3,00%	34,784	5,900	32,454
0+060	35,184	6,860	35,184	6,86	33,606	35,115	3,340	-1,00%	35,082	9,490	30,940
0+080	34,649	8,250	35,351	7,99	32,531	35,431	4,400	1,00%	35,475	13,030	29,697
0+100	34,410	9,730	35,628	8,00	31,962	35,868	4,500	3,00%	36,003	12,330	30,779
0+120	35,630	14,431	35,849	12,91	33,596	36,365	4,500	4,00%	36,545	9,860	32,978
0+140	36,071	12,610	36,415	11,21	34,735	36,863	1,800	4,00%	36,935	1,800	34,414
0+160	36,764	9,780	37,109	8,38	36,141	37,360	4,500	3,00%	37,495	7,340	35,596
0+180	37,366	9,360	37,715	8,00	36,715	37,795	4,500	1,00%	37,840	7,320	35,925
0+200	38,139	7,020	38,175	7,02	37,499	38,105	4,500	-1,00%	38,060	6,460	36,710
0+220	38,463	3,670	38,463	3,67	38,214	38,353	4,370	-3,00%	38,222	5,410	37,462
0+240	38,647	0,900	38,647	0,90	38,617	38,620	3,560	-3,00%	38,513	4,820	38,044
0+260			Paviment	o Existente	38,749	38,752	Pavimento Exi	stente			

NOTA DE SERVIÇO DE PAVIMENTAÇÃO DISTRITO INDUSTRIAL

					1	. DI3	IKIIO	INDUSTR	IAL	ı				
ESTACA	OF	F-SET	BORDO	INTERNO	PONTO IN	TERMEDIÁRIO		EIXO LO	CADO	ВО	RDO EXTERNO		OFF-	-SET
km	Cota	Distância	Cota	Distância	Cota	Distância	Cota	Terreno	Pavimento	Distância	SE%	Cota	Distância	Cota
RAMO B														
0+000					Pavimento	Existente		38,544	38,550	Pavimento Exis	stente			
0+020	38,443	0,980	38,443	0,980				38,398	38,405	1,780	-4,00%	38,334	3,020	38,236
0+040	39,339	3,080	39,339	3,080				38,269	38,216	3,070	-4,00%	38,093	4,620	37,905
0+060	37,914	6,550	38,158	6,550				37,895	38,028	5,000	-2,00%	37,928	5,000	38,017
0+080	37,407	8,950	37,778	7,620				38,350	37,778	6,940	0,00%	37,778	9,530	38,668
0+100	37,340	17,860	37,340	17,860	37,167	12,04		37,773	37,408	10,840	2,00%	37,625	13,980	39,083
0+120	36,687	11,890	36,519	9,980				37,137	36,918	6,130	4,00%	37,163	8,500	37,878
0+140	36,126	17,590	35,991	15,730				35,315	36,306	4,500	2,00%	36,396	6,140	35,292
0+160	35,173	9,210	35,660	8,000				34,201	35,660	4,500	0,00%	35,660	8,120	33,211
0+180	35,287	8,420	35,336	7,190				32,891	35,192	4,500	-2,00%	35,102	9,680	31,593
0+200	35,069	6,090	35,069	6,090				33,691	34,825	3,180	-4,00%	34,698	8,970	30,762
0+220	34,804	1,970	34,804	1,970				34,668	34,725	2,500	-4,00%	34,625	6,920	31,603
0+240					Pavimento	Existente		34,603	34,608	Pavimento Exis	stente			

ESTACA	OFI	-SET	BORDO	INTERNO	EIXO L	.OCADO	BO	RDO EXTERNO		OFF-SET	
km	Cota	Distância	Cota	Distância	Cota Terrenc	Pavimento	Distância	SE%	Cota	Distância	Cota
RAMO C											
0+000			SOBRE PIS	TA EXISTE	31,131	31,911	SOBRE PISTA EX	XISTENTE		i.	
0+010	31,627	1,920	32,628	0,500	31,473	32,628	4,000	2,00%	32,708	4,000	31,211
0+020	32,075	2,310	33,335	0,500	31,880	33,345	4,000	2,00%	33,425	4,000	31,675
0+030	32,429	2,850	34,052	0,500	32,273	34,062	4,000	2,00%	34,142	4,000	32,123
0+040	32,951	3,148	34,769	0,500	32,817	34,779	4,000	2,00%	34,859	4,000	32,632
0+050	33,397	3,550	35,486	0,500	33,360	35,496	4,000	2,00%	35,576	4,000	33,162
0+060	33,668	4,110	36,128	0,500	33,937	36,138	4,750	2,00%	36,233	4,750	33,710
0+070	33,725	4,430	36,410	0,500	34,218	36,426	7,070	3,21%	36,653	7,070	34,393
0+080	REGÊNCI	A DO RAM	O A		33,270	36,334	REGÊNCIA DO F	RAMO A			
0+090	REGÊNCI	A DO RAM	O A		32,140	36,052	REGÊNCIA DO F	RAMO A			4
0+100	REGÊNCI	A DO RAM	0 A		31,327	35,770	REGÊNCIA DO F	RAMO A			
0+110	REGÊNCI	A DO RAM	0 A		31,027	35,482	REGÊNCIA DO F	RAMO A			
0+118,6	REGÊNCI	A DO RAM	0 A				REGÊNCIA DO F	RAMO A			- 1

NOTA DE SERVIÇO DE PAVIMENTAÇÃO DISTRITO INDUSTRIAL

						DIS	TRITO INDUSTRIA	4L			
ESTACA	OFF	-SET	BORDO I	NTERNO	EIXO L	OCADO	BOR	RDO EXTERNO	10000	OFF-S	ET
km	Cota	Distância	Cota	Distância	Cota Terrenc	Pavimento	Distância	SE%	Cota	Distância	Cota
RAMO D		1									
0+000			SOBRE PIS	TA EXISTE	30,978	31,911	SOBRE PISTA EXI	ISTENTE			
0+010	31,211	4,00	32,708	4,000	31,439	32,628	0,500	-2,00%	32,618	1,93	31,614
0+020	31,675	4,00	33,425	4,000	31,900	33,345	0,500	-2,00%	33,335	2,23	32,128
0+030	32,135	4,00	34,142	4,000	32,273	34,062	0,500	-2,00%	34,052	2,58	32,612
0+040	32,684	4,00	34,859	4,000	32,849	34,779	0,500	-2,00%	34,769	2,85	33,147
0+050	33,240	4,23	35,581	4,230	33,397	35,496	0,500	-2,00%	35,486	3,09	33,705
0+060	33,909	7,66	36,366	7,660	34,511	36,213	0,500	-2,00%	36,203	2,82	34,606
0+070	35,604	5,51	37,150	5,510	35,597	36,846	0,500	-5,60%	36,818	2,53	45,376
0+080	REGÊNCIA	A DO RAM	ΑC		35,981	37,317	REGÊNCIA DO RA	AMO A			1
0+090	REGÊNCIA	A DO RAM	A C		36,118	37,627	REGÊNCIA DO RA	AMO A			
0+100	REGÊNCIA	A DO RAM	A C		36,503	37,803	REGÊNCIA DO RA	AMO A			1
0+110	REGÊNCIA	A DO RAM	A C		36,908	37,971	REGÊNCIA DO RA	AMO A			
0+120	REGÊNCIA	A DO RAM	A C		37,190	38,139	REGÊNCIA DO RA	AMO A			
0+130	REGÊNCIA	A DO RAM	A C		37,569	38,336	REGÊNCIA DO RA	AMO A			
0+131	REGÊNCIA	A DO RAM	A C		37,611	38,358	REGÊNCIA DO RA	AMO A			

ESTACA	OFF-SET BORDO INTERNO			NTERNO	EIXO L	OCADO	В	ORDO EXTERNO	_	OFF-SET	
km	Cota	Distância	Cota	Distância	Cota Terrenc	Pavimento	Distância	SE%	Cota	Distância	Cota
RAMO E											
0+000	SOBRE A	PISTA EXIS	TENTE		39,006	39,006				i.	
0+010	38,442	4,00	38,670	4,00	38,533	38,550	0,500	-3,00%	38,535	2,44	38,743
0+020	37,617	7,67	37,920	7,67	38,273	37,690	0,500	-3,00%	37,675	3,38	38,825
0+030	37,371	6,25	36,993	6,25	37,709	36,993	0,500	0,00%	36,993	2,96	37,752
0+040	REGÊNCI	A DO RAMO	O B		36,666	36,330		REGÊNCIA DO	RAMO B		
0+050	REGÊNCI	A DO RAMO	O B		35,454	36,186		REGÊNCIA DO	RAMO B		
0+060	REGÊNCI	A DO RAMO) B		34,206	35,896		REGÊNCIA DO	RAMO B	₩.	
0+070	REGÊNCI	A DO RAMO) B		33,571	35,636		REGÊNCIA DO	RAMO B		
0+080	REGÊNCI	A DO RAMO) B		33,187	35,376		REGÊNCIA DO	RAMO B		
0+092,43	REGÊNCI	A DO RAMO	ОВ					REGÊNCIA DO	RAMO B		

NOTA DE SERVIÇO DE PAVIMENTAÇÃO DISTRITO INDUSTRIAL

ESTACA	OFF	-SET	BORDO INTERNO		EIXO LOCADO		ВО	RDO EXTERNO	OFF-SET		
km	Cota	Distância	Cota	Distância	Cota Terrenc	Pavimento	Distância	SE%	Cota	Distância	Cota
RAMO F											
0+000	Regência do ramo				38,598	37,695		Regência do ra	mo RLE		
0+010	37,922	9,26	37,891	7,50	38,653	37,741	0,500	-2,00%	37,731	3,24	38,707
0+020	38,238	7,50	37,936	7,50	38,639	37,786	0,500	-2,00%	37,776	3,10	38,652
0+030	REGÊNCIA	A DO RAMO	ОВ		38,652	37,789		REGÊNCIA DO I	RAMO B	7	
0+040	REGÊNCIA	A DO RAMO	ОВ		38,757	37,725		REGÊNCIA DO I	RAMO B		
0+050	REGÊNCIA	A DO RAMO	ОВ		38,693	37,671		regência do i	RAMO B		
0+060	37,804	5,09	38,102	5,09	38,143	38,000	0,500	-2,00%	37,990	3,40	39,167
0+070	SOBRE A	PISTA EXIS	TENTE		38,903	38,766		SOBRE A PISTA			
0+077	SOBRE A	PISTA EXIS	TENTE		39,987	39,423		SOBRE A PISTA		7	

NOTA DE SERVIÇO DE PAVIMENTAÇÃO DISTRITO INDUSTRIAL EIXO LOCADO BORDO

ESTACA	OFF-SET		BORDO INTERNO		EIXO L	OCADO	ВС	ORDO EXTERNO	OFF-SET		
km	Cota	Distância	Cota	Distância	Cota Terrenc	Pavimento	Distância	SE%	Cota	Distância	Cota
RAMO G											
0+090	REGÊNCIA BR-471		71		41,385 41,385		REGÊNCIA BR-	471		lis.	
0+100	40,735	2,44	41,025	1,00	40,981	41,055	0,750	2,93%	41,077	0,75	40,913
0+110	40,673	4,17	40,730	2,50	40,838	40,805	7,900	3,00%	41,042	7,90	40,629
0+120	40,761	. 2,81	40,928	1,24	40,957	40,958	6,120	-1,05%	40,894	7,81	40,852
					4						
										Y	
											4

NOTA DE SERVIÇO DE PAVIMENTAÇÃO DISTRITO INDUSTRIAL

ESTACA	OFF-SET		BORDO INTERNO		EIXO LOCADO		ВС	RDO EXTERNO	OFF-SET		
km	Cota Distância		Cota	Distância	Cota Terrenc	ota Terrenc Pavimento		SE%	Cota	Distância	Cota
RAMO H											
0+000			Paviment	o existente	40,294	40,322					
0+010	40,364	4,51	40,456	4,51	40,423	40,411	1,14	-2,98%	40,377	2,32	40,230
0+020	40,611	8,97	40,769	8,97	40,604	40,500	2,49	-3,01%	40,425	4,24	40,441
0+030	40,632	11,40	41,042	11,40	40,682	40,700	2,5	-3,00%	40,625	4,10	40,497
0+040	41,427	12,92	41,231	11,05	40,894	40,900	1,27	-2,99%	40,862	2,67	40,531
			7								

ESTACA	OFF-SET		BORDO EXTERNO		BORDO INTERNO		EIXO LO	CADO	BORDO	NTERNO	BORDO EXTERNO		OFF-SET	
km	Cota	Distância	Cota	Distância	Cota	Distância	Cota Terreno	Pavimento	Distância	Cota	Distância	Cota	Distânci	a Cota
BR-471														
1+380	38,408	5,91	38,71	5,60	38,777	3,50	38,776	38,776	3,500	38,770	5,6	38,707	5,9	1 38,398
1+400	39,025	6,30	39,23	5,99	39,309	3,48	39,282	39,282	3,500	39,269	5,7	39,203	6,0	1 38,953
1+420	39,521	6,30	39,74	5,99	39,814	3,45	39,830	39,830	3,630	39,816	5,84	39,75	6,1	.5 39,437
1+440	40,057	6,31	40,29	6,00	40,371	3,41	40,343	40,343	3,570	40,346	5,77	40,28	6,0	8 39,971
1+460	40,510	6,57	40,729	6,25	40,814	3,44	40,824	40,824	3,540	40,805	5,94	40,733	6,2	5 40,450
1+480	40,696	8,60	41,096	6,62	41,189	3,52	41,194	41,194	3,570	41,200	6,16	41,123	6,4	7 40,848
1+500	40,996	8,60	41,417	6,75	41,513	3,54	41,505	41,505	3,600	41,504	6,26	41,424	6,5	7 41,115
1+520	41,711	8,60	41,643	6,75	41,739	3,53	41,743	41,743	3,590	41,737	6,31	41,656	6,6	2 41,346
1+540	41,339	8,60	41,784	6,75	41,880	3,53	41,906	41,906	3,530	41,873	6,03	41,798	6,3	41,545
1+560	41,335	8,60	41,744	6,75	41,836	3,69	41,905	41,905	3,410	41,808	5,72	41,739	6,0	3 41,430
1+580	41,068	8,60	41,664	6,75	41,753	3,77	41,860	41,860	3,310	41,780	5,68	41,709	5,9	9 41,400
1+600	41,114	8,60	41,579	6,75	41,669	3,76	41,779	41,779	3,290	41,672	5,63	41,602	5,9	41,292
1+620	41,097	8,60	41,410	6,75	41,497	3,84	41,614	41,614	3,280	41,485	5,21	41,427	5,2	1 41,427
1+640	40,721	-,	41,148	6,75	41,236	3,82	41,351	41,351	3,230		5,01	41,207	5,3	
1+660	40,541	8,60	40,798	8,03	40,925	3,81	41,010	41,010	3,220	40,919	5,01	40,865	5,3	2 40,620
1+680	40,159	11,11	40,381	10,80	40,592	3,76	40,641	40,641	3,170	40,532	5,11	40,474	5,4	2 40,255
1+700	39,931	9,89	40,107	9,58	40,279	3,85	40,305	40,305	3,160	40,220	4,89	40,168	5	2 39,963
1+720	39,667	9,23	39,809	8,92	39,963	3,79	39,965	39,965	3,170	39,895	5,03	39,84	5,3	39,615
1+740	39,422	8,60	39,544	8,24	39,677	3,79	39,650		3,190		5,11	39,5	5,4	2 39,217
1+760	39,089	8,60	39,254	7,77	39,376	3,71	39,318	39,318	3,230	39,216	5,25	39,156	5,5	6 38,928
1+780	38,485	8,60	38,900	6,92	38,999	3,60	38,959	38,959	SEM ALTERAÇ	ÃO NA PISTA	EXISTENTE			
1+800	38,484	6,38	38,567	6,07	38,642	3,58	38,607	38,607	SEM ALTERAÇ	ÃO NA PISTA	EXISTENTE			
1+820	38,157	6,31	38,228	6,00	38,302	3,56	38,266	38,266	SEM ALTERAÇ	ÃO NA PISTA	EXISTENTE			
1+840	37,808	6,20	37,889	5,89	37,959	3,53	37,924	37,924	SEM ALTERAÇ	ÃO NA PISTA 	EXISTENTE			

ESTACA	A OFF-SET		BORDO ESQUERDO		EIXO LOCADO		PONTO INTERMEDIÁRIO		BORD	O EXTERNO	7	OFF-SET		
km	Cota	Distância	Cota	SE%	Distância	Cota Terreno	Pavimento	Distância	Cota	Distância	SE%	Cota	Distância	Cota
RLE														
1+060	40,863	3,51	40,997	-2%	2,15	41,024	41,040			4,000	-2%	40,960	5,42	40,883
1+080	40,684	3,15	41,053	-2%	2,02	40,868	41,093			8,210	-2%	40,929	10,31	41,535
1+100	40,901	5,45	40,949	-2%	4,00	41,047	41,029			11,900	-2%	40,791	13,66	41,055
1+120	40,972	5,53	40,933	-2%	4,00	41,067	41,013			4,000	-2%	40,933	5,43	40,863
1+140	40,870	5,43	40,938	-2%	4,00	41,000	41,018			4,000	-2%	40,938	5,41	40,850
1+160	40,718	5,27	40,943	-2%	4,00	40,753	41,023			4,000	-2%	40,943	5,05	40,493
1+180	40,847	5,47	40,876	-2%	4,00	41,000	40,956			4,000	-2%	40,876	5,47	40,850
1+200	40,452	5,31	40,641	-2%	4,00	40,338	40,721			4,000	-2%	40,641	5,34	39,922
1+220	39,977	5,15	40,324	-2%	4,00	40,000	40,404			4,000	-2%	40,324	5,02	39,850
1+240	39,850	5,35	39,994	-2%	4,00	40,000	40,074			4,000	-2%	39,994	5,35	39,850
1+260	39,841	5,74	39,599	-2%	4,00	40,055	39,679			4,000	-2%	39,599	5,77	39,872
1+280	38,700	5,05	39,147	-2%	4,00	38,617	39,227			4,000	-2%	39,147	5,12	38,770
1+300	37,715	5,72	38,691	-2%	4,00	37,841	38,771			4,000	-2%	38,691	7,13	36,776
1+320	35,802	7,91	38,235	-2%	4,00	37,439	38,315			4,000	-2%	38,235		37,209
1+340	36,687	5,89	37,778	-2%	4,00	37,037	37,858			4,000	-2%	37,778	5,37	37,653
1+360	36,850	5,03	37,322	-2%	4,00	37,000	37,402			4,000	-2%	37,322	6,38	38,204
1+380	36,644	5,27	36,866	-2%	4,00	36,642	36,946			4,000	-2%	36,866	5,45	36,822
1+400	35,873	5,06	36,410	-2%	4,00	36,167	36,490			4,000	-2%	36,410	5,51	36,431
1+420	35,193	5,40	35,954	-2%	4,00	35,602	36,034			4,000	-2%	35,954	5,39	35,850
1+440	35,366	5,36	35,477	-2%	4,00	35,600	35,557			4,000	-2%	35,477	6,01	36,046
1+460	34,654	5,06	35,089	-2%	4,00	34,695	35,169			4,000	-2%	35,089	5,59	35,183
1+480	33,908	5,73	34,890	-2%	4,00	33,940	34,970			4,000	-2%	34,890	5,50	34,894
1+500	34,015	5,49	34,834	-2%	4,00	34,014	34,914			4,000	-2%	34,834	5,12	34,259
1+520	34,071	5,32	34,780	-2%	4,00	34,110	34,860			4,000	-2%	34,780	5,07	34,236
1+540	34,372	5,14	34,727	-2%	4,00	34,693	34,807			5,140	2%	34,910		34,727
1+560	34,347	5,17	34,674	-2%	4,00	34,700	34,754			10,380	2%	34,962	5,55	34,733
1+580	31,688	8,66	34,620	-2%	4,00	32,944	34,700			4,000	-2%	34,620	5,51	33,788
1+600	33,343	6,09	34,567	-2%	4,00		34,647			4,000	-2%	34,567	5,09	34,158
1+620	34,178	5,18	34,489	-2%	4,00	34,620	34,569			4,000	-2%	34,489	5,83	34,822
1+640	34,104	5,23	34,372	-2%	4,00	34,162	34,452			4,000	-2%	34,372	6,00	34,872
1+660	33,763	5,07	34,189	-2%	4,00	34,107	34,269			4,000	-2%	34,189	5,47	34,164

ESTACA	A OFF-SET		BORDO ESQUERDO		EIXO LOCADO		PONTO INTERMEDIÁRIO		BORDO EXTERNO			OFF-SET		
km	Cota	Distância	Cota	SE%	Distância	Cota Terreno	Pavimento	Distância	Cota	Distância	SE%	Cota	Distância	Cota
RLE														
1+680	33,583	5,13	33,949	-2%	4,00	33,863	34,029			4,000	-2%	33,949	5,40	33,850
1+700	33,310	5,15	33,653	-2%	4,00	33,540	33,733			4,000	-2%	33,653	5,34	33,496
1+720	32,801	5,07	33,340	-2%	4,00		33,420			4,000	-2%	33,340	5,87	33,711
1+740	32,695	5,16	33,028	-2%	4,00		33,108			4,000	-2%	33,028	5,07	32,485
1+760	32,615	5,39	32,716	-2%	4,00	,	32,796			4,000	-2%	32,716	5,18	32,404
1+780	31,843	5,16	32,403	-2%	4,00		32,483			4,000	-2%	32,403	5,41	32,321
1+800	31,646	5,05	32,091	-2%	4,00		32,171			4,000	-2%	32,091	5,59	32,190
1+820	31,187	5,15	31,779	-2%	4,00	31,963	31,859			4,000	-2%	31,779	5,65	31,938
1+840	30,933	5,06	31,467	-2%	4,00	31,514	31,547			4,000	-2%	31,467	6,09	32,057
1+860	31,351	5,66	31,182	-2%	4,00		31,262			4,000	-2%	31,182	5,81	31,500
1+880	30,383	5,56	31,251	-2%	4,00	29,920	31,331			4,000	-2%	31,251	5,51	30,413
1+900	29,332	7,90	31,759	-2%	4,00	30,386	31,839			4,000	-2%	31,759		31,073
1+920	32,224	5,29	32,431	-2%	4,00	32,483	32,511			4,000	-2%	32,431	5,51	32,446
1+940	32,836	5,23	33,101	-2%	4,00	33,033	33,181			4,000	-2%	33,101	5,81	33,414
1+960	33,561	5,39	33,669	-2%	4,00	33,755	33,749			4,000	-2%	33,669	5,3	33,471
1+980	33,470	5,11	34,035	-2%	4,00	33,585	34,115			4,000	-2%	34,035	5,18	33,421
2+000	33,210	6,01	34,378	-2%	4,00	33,081	34,458			4,000	-2%	34,378	6,21	33,074
2+020	32,208	7,82	34,681	-2%	4,00	32,767	34,761			4,000	-2%	34,681	5,75	33,686
2+040	34,769	5,28	34,983	-2%	4,00	35,398	35,063	4,000	34,983	12,567	8,22%	35,687	21,57	35,687
2+060	35,274	5,47	35,300	-2%	4,00	35,464	35,380			4,000	-2%	35,300	5,52	35,324
2+080	35,572	5,36	35,711	-2%	4,00	35,739	35,791			4,000	-2%	35,711	5,36	35,577
2+100	36,311	5,59	36,215	-2%	4,00	36,419	36,295			4,000	-2%	36,215	6,03	36,754
2+120	36,841	5,60	36,733	-2%	4,00	37,035	36,813			4,000	-2%	36,733	5,93	37,172
2+140	37,301	5,55	37,251	-2%	4,00	37,453	37,331			4,000	-2%	37,251	6,37	38,124
2+160	37,639	5,40	37,730	-2%	4,00	37,799	37,810			4,000	-2%	37,730	6,38	38,614
2+180	37,927	5,38	38,044	-2%	4,00	38,129	38,124			6,760	2,00%	38,259	8,88	38,928
2+200	38,205	5,52	38,177	-2%	4,00		38,257			7,980	-2%	38,097	9,8	38,783
2+220	38,186	5,55	38,127	-2%	4,00		38,207			4,000	-2%	38,127	5,52	38,153
2+240	34,936	8,88	38,020	-2%	4,00		38,100			4,000	-2%	38,020	5,63	38,157
2+260	38,042	5,62	37,913	-2%	4,00		37,993			4,000	-2%	37,913	5,48	37,895
2+280	37,905	5,60	37,805	-2%	4,00		37,885			4,000	-2%	37,805	5,54	37,850
2+300	37,870	5,67	37,698	-2%	4,00		37,778			4,000	-2%	37,698	5,96	38,158
2+300	37,670	3,07	37,036	-2/0	4,00	36,133				4,000	-2/0	37,098	3,90	30,130
							37,695							

17 – ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA

ART Número 12092954

Conselho Regional de Engenharia e Agronomia do Rio Grande do Sul

Convênio: NÃO É CONVÊNIO Motivo: NORMAL

Contratado

Profissional: MARCUS VINÍCIUS PEREIRA FRAGA Carteira: RS108637 E-mail: marcv.fraga@gmail.com

RNP: 2200268947 Título: Engenheiro Civil

Empresa: GALMARC CONSULTORIA LTDA 241893 Nr.Reg.:

Participação Técnica: INDIVIDUAL/PRINCIPAL

Contratante

Nome: COPARROZ - COOPERATIVA AGROINDUSTRIAL RIO PARDO E-mail: marione@coparroz.com.br

Endereco: RODOVIA BR-471 KM 164,5 **Telefone:** (51) 3731-1644 CPF/CNPJ: 95111100000282 Cidade: RIO PARDO Bairro.: 5° DISTRITO **CEP:** 96640000

Identificação da Obra/Serviço

Tipo:PRESTAÇÃO DE SERVIÇO

Proprietário: DEP. NAC. DE INFRAESTRUTURA DE TRANSPORTES - DNIT

Endereço da Obra/Serviço: Rodovia BR-471 KM 179 CPF/CNPJ:

Cidade: RIO PARDO Bairro: PICADA SÃO PAULO **CEP:** 96640000 UF:RS Finalidade: OUTRAS FINALIDADES Vlr Contrato(R\$): 5.000,00 Honorários(R\$): 5.000,00 Prev.Fim: 25/08/2022 **Data Início:** 01/02/2022 Ent.Classe: SENGE-RS

Quantidade Atividade Técnica Descrição da Obra/Serviço Unid.

Proieto Estradas 2,00 KM

Observações PROJETO DE ENGENHARIA PARA CONCESSÃO DE ACESSO NA BR-471 KM178+500 AO KM180+500, CONTEMPLANDO PROJETO GEOMÉTRICO, Observações PROJETO DE DRENAGEM, PROJETO DE SINALIZAÇÃO, DE OBRAS Observações Observações COMPLEMENTARES, PROJETODE SINALIZAÇÃO DE OBRAS, PROJETO DE Observações PAVIMENTAÇÃO, DE ILUMINAÇÃO, SONDAGENS DO SUBLEITO E

Observações LEVANTAMENTO TOPOGRÁFICO, PROJETO DE OBRAS DE ARTE CORRENTES

Observações E PROJETO DE TERRAPLENAGEM

ART registrada (paga) no CREA-RS em 24/08/2022

Declaro serem verdadeiras as informações acima

Rio Pardo, 24/08/22.

Local e Data

MARCUS VINÍCIUS PEREIRA FRAGA

De acordo

ANTONIO BARBOSA NETTO JUNIOR

Assinado de forma digital por ANTONIO BARBOSA NETTO JUNIOR Dados: 2022.08.25 09:01:42 -03'00'

COPARROZ - COOPERATIVA AGROINDUSTRIAL RIO PARDO

Profissional

ART Número 12092938

Conselho Regional de Engenharia e Agronomia do Rio Grande do Sul

Tipo:PRESTAÇÃO DE SERVIÇO Participação Técnica: INDIVIDUAL/PRINCIPAL

Convênio: NÃO É CONVÊNIO Motivo: NORMAL

Contratado

Profissional: MARCUS VINÍCIUS PEREIRA FRAGA Carteira: RS108637 E-mail: marcv.fraga@gmail.com

RNP: 2200268947 Título: Engenheiro Civil

Empresa: GALMARC CONSULTORIA LTDA 241893

Contratante

Nome: COOPERATIVA AGRÍCOLA MISTA GENERAL OSÓRIO LTDA E-mail: leonardo.maffini@cotriba.com.br

Endereço: RODOVIA BR-471 KM 161,30 Telefone: 54 3324-8800 CPF/CNPJ: 90657289008193 Cidade: RIO PARDO Bairro.: PASSO DO ADÃO **CEP:** 96640000

Identificação da Obra/Serviço

Proprietário: DEP. NAC. DE INFRAESTRUTURA DE TRANSPORTES - DNIT

Endereço da Obra/Serviço: Rodovia BR-471 KM 179 CPF/CNPJ:

Cidade: RIO PARDO Bairro: PASSO DO ADÃO **CEP:** 96640000 UF:RS Finalidade: OUTRAS FINALIDADES 5.000.00 Vlr Contrato(R\$): Honorários(R\$): 5.000,00

Prev.Fim: 25/08/2022 **Data Início:** 01/02/2022

Quantidade Atividade Técnica Descrição da Obra/Serviço Unid. Projeto Estradas 2,00 KM

PROJETO DE ENGENHARIA PARA CONCESSÃO DE ACESSO NA BR-471 Observações Observações KM178+500 AO KM180+500, CONTEMPLANDO PROJETO GEOMÉTRICO, PROJETO DE DRENAGEM, PROJETO DE SINALIZAÇÃO, DE OBRAS Observações Observações COMPLEMENTARES, PROJETODE SINALIZAÇÃO DE OBRAS, PROJETO DE

PAVIMENTAÇÃO, DE ILUMINAÇÃO, SONDAGENS DO SUBLEITO E Observações

LEVANTAMENTO TOPOGRÁFICO, PROJETO DE OBRAS DE ARTE CORRENTES Observações

E PROJETO DE TERRAPLENAGEM Observações

ART registrada (paga) no CREA-RS em 24/08/2022

Rio Pardo, 24/08/22.

Local e Data

Declaro serem ve

s informações acima

MARCUS VINÍCIUS PEREIRA FRAGA

Profissional

DATO OTA Celso Leomar Krug Enio Cezar Moura do Nascir

Ent.Classe: SERGS

COOPERATIVA AGRÍCOLA MISTA GENERAL OSÓRIO LTDA

Contratante

ART Número 12092960

Conselho Regional de Engenharia e Agronomia do Rio Grande do Sul

Tipo: PRESTAÇÃO DE SERVIÇO Convênio: NÃO É CONVÊNIO

Participação Técnica: INDIVIDUAL/PRINCIPAL

Motivo: NORMAL

Contratado

Profissional: MARCUS VINÍCIUS PEREIRA FRAGA Carteira: RS108637

E-mail: marcv.fraga@gmail.com

RNP: 2200268947

Título: Engenheiro Civil

Empresa: GALMARC CONSULTORIA LTDA

Nr.Reg.:

241893

Contratante

Nome: COTRIJAL COOPERATIVA AGROPECUÁRIA E INDUSTRIA

E-mail: lnascimento@cotrijal.com.br

Endereço: RODOVIA BR-471 KM 180,3

Telefone: (54) 3332-2500 -2689

CPF/CNPJ: 91495549012085

Bairro.: PASSO DO ADÃO

CEP: 96640000 UF:RS

Identificação da Obra/Serviço

Proprietário: DEP. NAC. DE INFRAESTRUTURA DE TRANSPORTES - DNIT

Endereço da Obra/Serviço: Rodovia BR-471 KM 179

CPF/CNPJ:

UF:RS

Cidade: RIO PARDO

Cidade: RIO PARDO

Bairro: PASSO DO ADÃO

CEP: 96640000 5.000,00

Honorários(R\$): 5.000,00

Finalidade: OUTRAS FINALIDADES Data Início: 01/02/2022

Prev.Fim: 25/08/2022

Ent.Classe: SENGE-RS

Atividade Técnica Projeto

Descrição da Obra/Serviço

Quantidade

KM 2,00

Unid.

Observações Observações Observações

Observações

Observações

Estradas PROJETO DE ENGENHARIA PARA CONCESSÃO DE ACESSO NA BR-471

KM178+500 AO KM180+500, CONTEMPLANDO PROJETO GEOMÉTRICO, PROJETO DE DRENAGEM, PROJETO DE SINALIZAÇÃO, DE OBRAS

VIr Contrato(R\$):

COMPLEMENTARES, PROJETODE SINALIZAÇÃO DE OBRAS, PROJETO DE PAVIMENTAÇÃO, DE ILUMINAÇÃO, SONDAGENS DO SUBLEITO E

Observações LEVANTAMENTO TOPOGRÁFICO, PROJETO DE OBRAS DE ARTE CORRENTES

Observações E PROJETO DE TERRAPLENAGEM

ART registrada (paga) no CREA-RS em 24/08/2022

Declaro serem verd

ıformações acima

De acordo

Rio Pardo, 24/08/22.

Local e Data

MARCUS VINÍCIUS PEREIRA FRAGA Profissional

COTRIJAL COOPERATIVA AGROPECUÁRIA E INDUSTRIA

ART Número 12092931

Conselho Regional de Engenharia e Agronomia do Rio Grande do Sul

Tipo:PRESTAÇÃO DE SERVIÇO

Participação Técnica: INDIVIDUAL/PRINCIPAL

Convênio: NÃO É CONVÊNIO

Motivo: NORMAL

Contratado

Carteira: RS108637 RNP: 2200268947

Profissional: MARCUS VINÍCIUS PEREIRA FRAGA

Título: Engenheiro Civil

Empresa: GALMARC CONSULTORIA LTDA

E-mail: marcv.fraga@gmail.com

Nr.Reg.:

241893

Contratante

Nome: IMPORTADORA E EXPORTADORA DE CEREAIS SA

Endereço: RODOVIA BR-471 KM 161

Cidade: RIO PARDO

E-mail: mbrum@liderdosul.com.br

Telefone: (51) 3714-8100 Bairro.: PASSO DO ADÃO

CEP: 96640000

CPF/CNPJ: 91156471004640

Identificação da Obra/Serviço

Proprietário: DEP. NAC. DE INFRAESTRUTURA DE TRANSPORTES - DNIT

Endereço da Obra/Serviço: Rodovia BR-471 KM 179

Bairro: PASSO DO ADÃO

CPF/CNPJ:

UF:RS

Cidade: RIO PARDO Finalidade: OUTRAS FINALIDADES

Data Início: 01/02/2022

Prev.Fim: 25/08/2022

Vlr Contrato(R\$): 5.000,00

CEP: 96640000 Honorários(R\$): 5.000,00

Atividade Técnica

Descrição da Obra/Serviço

Ent.Classe: SERGS Quantidade

Unid.

Projeto

Estradas

KM 2.00

Observações Observações Observações

PROJETO DE ENGENHARIA PARA CONCESSÃO DE ACESSO NA BR-471 KM178+500 AO KM180+500, CONTEMPLANDO PROJETO GEOMÉTRICO, PROJETO DE DRENAGEM, PROJETO DE SINALIZAÇÃO, DE OBRAS COMPLEMENTARES, PROJETODE SINALIZAÇÃO DE OBRAS, PROJETO DE PAVIMENTAÇÃO, DE ILUMINAÇÃO, SONDAGENS DO SUBLEITO E

Observações Observações Observações

Observações

LEVANTAMENTO TOPOGRÁFICO, PROJETO DE OBRAS DE ARTE CORRENTES E PROJETO DE TERRAPLENAGEM

ART registrada (paga) no CREA-RS em 24/08/2022

Declaro serem verdad

ormações acima

De acordo

Local e Data

Rio Pardo, 24/08/2022

MARCUS VINÍCIUS PEREIRA FRAGA Profissional IMPORTADORA E EXPORTADORA DE CERÇAIS SA Contratante

A AUTENTICIDADE DESTA ART PODE SER CONFIRMADA NO SITE DO CREA-RS, LINK SOCIEDADE - ART CONSULTA

Simone Ferreira de Souza Albanese Diretora Impra. e Expra. de Cereais S/A.

ART Número 12092963

Conselho Regional de Engenharia e Agronomia do Rio Grande do Sul

Tipo: PRESTAÇÃO DE SERVICO Convênio: NÃO É CONVÊNIO

Participação Técnica: INDIVIDUAL/PRINCIPAL

Motivo: NORMAL

Contratado

Contratante

Carteira: RS108637 Profissional: MARCUS VINÍCIUS PEREIRA FRAGA

RNP: 2200268947 Título: Engenheiro Civil

Empresa: GALMARC CONSULTORIA LTDA

Nr.Reg.:

241893

Nome: SULMIX INDUSTRIA DE DILUENTES LTDA

Endereço: RODOVIA BR-471 KM 180,1

Telefone: Cidade: RIO PARDO Bairro .: PASSO DO ADÃO

E-mail: natanael@sulmixdiluentes.com.br (55) 3261 4084

CPF/CNPJ: 06637075000245 CEP: 96640000

E-mail: marcv.fraga@gmail.com

Identificação da Obra/Serviço

Proprietário: DEP. NAC. DE INFRAESTRUTURA DE TRANSPORTES - DNIT

Endereço da Obra/Serviço: Rodovia BR-471 KM 179

Cidade: RIO PARDO

Bairro: PASSO DO ADÃO

CEP: 96640000 UF:RS

Finalidade: OUTRAS FINALIDADES Data Início: 01/02/2022

Prev.Fim: 25/08/2022

Vir Contrato(RS): 5.000,00

Honorários(R\$): 5.000,00

Atividade Técnica

Ent.Classe: SERGS

CPF/CNPJ:

Projeto

Descrição da Obra/Serviço

Quantidade Unid. 2,00 KM

Observações Observações Observações

Observações

Observações

Estradas PROJETO DE ENGENHARIA PARA CONCESSÃO DE ACESSO NA BR-471

KM178+500 AO KM180+500, CONTEMPLANDO PROJETO GEOMÉTRICO. PROJETO DE DRENAGEM, PROJETO DE SINALIZAÇÃO, DE OBRAS COMPLEMENTARES, PROJETODE SINALIZAÇÃO DE OBRAS, PROJETO DE

PAVIMENTAÇÃO, DE ILUMINAÇÃO, SONDAGENS DO SUBLEITO E

Observações LEVANTAMENTO TOPOGRÁFICO, PROJETO DE OBRAS DE ARTE CORRENTES Observações E PROJETO DE TERRAPLENAGEM

ART registrada (paga) no CREA-RS em 24/08/2022

Declaro serem verdadeiras as informações acima

Profissional

Rio Pardo, 24/08/22.

Local e Data

MARCUS VINÍCIUS PEREIRA FRAGA

De acordo

SULMIX INDUSTRIA DE DILUENTES LTDA

18 – TERMO DE ENCERRAMENTO

O presente Volume 1, denominado Projeto Executivo de Engenharia, referente ao tratamento do Perímetro Urbano no Distrito Industrial de Rio Pardo, no município de Rio Pardo no estado do Rio Grande do Sul, localizado entre o km 178+700 e o km 180+200 da Rodovia BR-471/RS, com extensão projetada de 2,00 km, que possui 113 páginas (inclusive esta), numeradas consecutivamente em ordem crescente.

Porto Alegre, 01 de novembro de 2022.

(Alexander

GALMARC Consultoria

Engenheiro Civil Marcus Fraga